
A Market-Inspired Bidding Scheme for Peer Review Paper
Assignment

Reshef Meir

Technion-Israel Institute of

Technology

reshefm@ie.technion.ac.il

Jérôme Lang

CNRS, LAMSADE, Université

Paris-Dauphine

lang@lamsade.dauphine.fr

Julien Lesca

Université Paris-Dauphine

julien.lesca@gmail.com

Natan Kaminsky

Technion-Israel Institute of

Technology

natank@campus.technion.ac.il

Nicholas Mattei

Tulane University

nsmattei@tulane.edu

ABSTRACT
We propose a market-inspired bidding scheme for the assignment

of paper reviews in large academic conferences. The primary con-

tribution is an analysis of the incentives of reviewers during the

bidding phases, when reviewers have private costs and some infor-

mation about the demand for each paper, and want to obtain the

best possible k papers for a predetermined k .
We show that by assigning budgets to reviewers and a ‘price’ for

every paper that is (roughly) inversely proportional to its demand,

the best response of a reviewer is to bid sincerely, i.e., on her most

favorite papers, and match the budget even when it is not enforced.

Finally, we show via extensive simulations on bidding data from

real conferences, that our suggested bidding scheme would substan-

tially improve the assignment, under several common assignment

algorithms.

1 INTRODUCTION
Academics spend much of their time and effort (that is, our time

and effort) on peer-review for journals and conferences. This is an

unpaid labor that academics perform out of sense of duty, which

serves several important purposes for all involved parties. It helps

editors and program chairsmake informed decisions onwhat papers

to publish; it provides authors with valuable feedback on their work;

and it keeps the reviewer updated about recent advances in their

respective fields.

While in journals the assignment of papers to reviewers is typi-

cally handled manually by the editors, peer-reviewed conferences

and workshops often use automated assignment algorithms whose

outcome is based on the stated preferences of the program commit-

tee members (reviewers). The program chairs intervene to solve

problems in the assignment, such as allocating papers that no one

asked to review. The frequency of these ‘orphan’ papers varies and

that this is a recurrent problem in the design of bidding processes

(see Table 1 below).

The central problem we consider in this paper is how to improve
the assignment in conferences, to the benefit of all involved parties:
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reviewers, program chairs, and authors. Crucially, the improvements

we suggest are easy to implement: they only require to reveal certain

information to the reviewers about the current paper demands.

These suggestions are orthogonal to the assignment algorithm and

other design choices which are specific to the conference or the

platform in use.

In the remainder of Section 1 we describe the current paper as-

signment process as it is typically performed in large computer

science conferences and demonstrate some of the problematic is-

sues using statistics from recent examples. We briefly argue, using

ideas from mechanism design, that creating a market for bids is

one way to alleviate these problems, we offer a summary of the pri-

mary contributions of our work, and explain how it complements

previous work in the area.

1.1 The Paper Assignment Process
Consider a large CS conference such as AAAI, IJCAI, ICML, or

NeurIPS which have somewhere between 1,000 – 10,000 submis-

sions and 1,000 – 3,000 reviewers. The assignment process typically

proceeds through the following steps:

• The program chair recruits program committee members

(PCMs) to serve as reviewers. We denote them by the set N
where |N | = n. PCMs do not know which papers they are

going to review, but rather agree to review some number of

papers, which ranges from 4-6 in some conferences to 10-14

in others.

• Authors submit their papers by a certain date. We denote

the set of papers byM and |M | =m.

• PCMs get access to papers’ titles and abstracts via an online

platform such as EasyChair or Confmaster, and are asked to

“bid" on papers they want to review. It is typically possible to

bid one of several levels (e.g. “want to review", “can review if

needed" etc.) as well as to report a conflict of interests (COI).

There are usually 2-5 days to complete the bidding process.

• Typically PCMs are asked (but not enforced) to bid positively

on a minimum number R of papers (e.g., 30), R being much

higher than the actual number of expected reviews.

• After the bidding round is complete, the bid matrix is fed as

input to an assignment algorithm, together with additional

constraints such as the minimum and maximum number of

https://doi.org/
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papers per PCM. Each paper should be assigned to a fixed

number r of reviewers, typically 2—4.

• Once the program chair is satisfied with the assignment, they

forward the assigned papers to PCMs and the reviewing pe-

riod starts. PCMs who are dissatisfied with their assignment

may email the program chair, who handles these issues man-

ually.

On average, each PCM should get k := mr
n papers for review.

There are many assignment algorithms in use, which typically solve

a constrained optimization problem that maximizes the number

of papers that go to PCMs that have bid for them. Conferences

use either an off-the-shelf algorithm provided with the platform or

written specifically for the conference [8].
1
In other cases, the actual

assignment algorithm itself can be a black-box, see discussion by

Lian et al. [12].

In Table 1 below we provide some data for a few small, medium,

and large conferences.
2
See more information on anonymized con-

ferences in Table 2. Unfortunately, it is common that the bidding

across papers is highly skewed, with some papers getting an over-

whelming amount of positive bids, while others remain with very

few or none at all (we can see that the EC conference, at least in

2018, is a refreshing outlier!)

The standard protocol has several drawbacks: (1) it is hard or

impossible to find proper reviewers for ‘orphan’ (underdemanded)

papers; (2) the assignment of overdemanded and underdemanded

papers is somewhat arbitrary, and results in additional work for

the PCMs and often low quality reviews; (3) PCMs spend time and

effort bidding on papers that they are unlikely to get, either because

they are overdemanded, or because they already unknowingly bid

on enough papers; (4) program chairs typically spend a lot of time

and effort coping with underdemanded papers.

1.2 A market for reviews
Imagine that instead of the current bidding system, we had amarket
where papers had prices and reviewers had money. Overdemanded

papers would become very expensive, whereas the price of under-

demanded papers would become low (or even negative). A reviewer

currently holding some expensive (overdemanded) papers, might

want to sell it and buy cheap (underdemanded) papers instead.

When prices stabilize, papers with few bids will be rare since they

will have very low (or negative) price.

Naively applying a market approach to the paper assignment

problem may be impractical, as it requires too much interaction

among already-busy PCMs. Moreover, the “paper market" differs

from other markets in that all PCMs are eventually assigned a

similar number of papers, even if they do not bid at all. The lack

of quasi-linear utilities (as there is no use of real money) further

complicates things.

Most importantly, the assignment may have various constraints

and considerations that are difficult to capture formally and handle

rigorously. Thus, program chairs are unlikely to adopt a completely

new algorithm that may solve some issues but is not tailored for

1
One of the program co-chairs of AAAI-17, Shaul Markovitch, wrote his own algorithm

to handle assignments.

2
We thank the program chairs of these conferences that have agreed to contribute

these statistics.

their needs, and PCMsmay be deterred by an interface very different

from what they are used to.

1.3 Paper Goal and Contribution
Our goal is to improve paper bidding, which in turn will improve

paper assignment. We present a simple paper bidding mechanism

called the proportional bidding scheme: PCMs are each assigned

some initial budget R they are expected to exhaust, and the price

of every paper changes dynamically, inversely proportional to its

demand. Then, papers are assigned based on these bids using any

ordinary assignment algorithm. That is, we do not aim to replace

existing assignment algorithms, but to enhance their input—and
thus to improve their output.

In order to compare the suggested bidding scheme to the current

one, the main theoretical challenge is to model and analyze bidding

incentives, without specifying an explicit assignment algorithm.

More specifically, we do the following:

• Define a “mock assignment", as an abstraction that captures

the key properties of assignment algorithms and aims at

capturing the perceived probability, for a PCM, to be assigned

a paper.

• Prove that in the game induced by the proportional bidding

scheme and the mock assignment, there is an incentive for

PCMs to make sincere bids that match the requested bidding

amount R.

• Show via extensive simulations that if bidders are sensitive

to price (less likely to bid on cheap, low probability papers)

then our bidding scheme obtains socially better outcomes:

the bids are more balanced across papers, and PCMs get

better papers on average.

A secondary claim that we make is that the price mechanism can

make the bidding process easier for some PCMs under the assump-

tion that there is some effort involved in checking one’s own utility

for each paper.

We defer most of the longer proofs and some of the simulation

results to the appendix.

1.4 Related Work
Assignment Algorithms. A first stream of papers consists of in-

formation retrieval approaches to the assignment problem: a paper

is considered as a query, and each reviewer is considered as a text

document. The aim is to retrieve a certain number of reviewers that

are relevant to the paper without asking them to make explicit bids.

These (numerous) papers are far from our work and focus; we only

cite a recommendation-based approach that aims at easing paper

bidding, namely the Toronto Paper Matching System (TPMS) [6]: for

each paper j and each reviewer i , a fitness degree is determined by

the proximity between j and some of the papers authored by i . The
PCM can e.g. sort papers by their fitness degree during the bidding

process to facilitate bidding and read fewer abstracts. Our proposal

for a bidding scheme is compatible with TPMS or similar systems

as well as advances in assignment and matching algorithms. De-

fault bids may be computed taking into account keywords or TPMS

score, if one of these is available, and reviewers would then be able

to update their bid taking paper prices into account.
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Conference m n r k required R < r bids 0 bids bid / PCM bid / paper

ijcai 18 3470 2035 3 ∼ 5 40-50 140 5 40.4 29.7

aaai 17 2414 1321 3 ∼ 4 30 47 18 24.9 13.66

ec 18 280 193 3 ∼5 25 - - ? ?

ksem 06 235 88 2 10.7 30 18 5 16 6

kr 08 234 93 3 7.5 20 - - 21.3 9.7

wine 11 101 27 3 ∼11 ? 10 - ? ?

tark 17 91 20 3 13.5 25-30 32 8 15.85 3.4

Table 1: We recall that m is the number of papers, n the number of PC members, r the number of reviews per paper, k the
average number of reviews per PCM, and R (when defined) the bidding target expressed by the program chair (“please bid
on at least R papers”). We show the number of papers that received less than r bids, or 0 bids, respectively; we also show the
average number of bids per PCM (respectively paper).

A second stream consists ofmatching-based approaches. The aim
is to find an optimal assignment of papers to reviewers, given the

input data. There are two subcategories of work in this area.

In the first subcategory, the input to the assignment is based on

keyword or topic overlap: the input data consists of a set of keywords
and/or topics for each paper, and for each reviewer. In this category

we find Hartvigsen et al. [10], Nguyen et al. [16], Ahmed et al. [1],

Long et al. [13], and Conry et al. [7]. The latter two integrate a

recommendation stage and a matching stage. Long et al. [13] makes

an interesting note echoes our observation from Table 1:

(...) it might happen that some popular reviewers are
assigned to excessive papers while some other reviewers
with very few or even no papers. (...)

In the second subcategory, the assignment is based on bids that
PCMs place on papers, as described in step 3 in the process pre-

sented in Section 1.1. In this category we find Lian et al. [12], Garg

et al. [8], Goldsmith and Sloan [9] (who also consider keyword

overlap), and the (unknown) algorithm used by EasyChair.

Bidding Behavior. Very few papers focus on the behavior of bid-

ders within the assignment system. The only empirical work we

know of is Rodriguez et al. [18], which analyses the bids of reviewers

for a real conference, and studies its correlationwith reviewer-paper

fit. This fit is measured by a complex combination of techniques

involving the co-author network, keyword occurrence, reviewer

similarity and submission similarity. They find that the bidding be-

haviour is only weakly related to the subject of the submission, and

that plenty of other (unidentified, conjectured) factors influence

the bidding behaviour. They repeat the observation on imbalanced

bids, and conclude that

Since bidding is the preliminary component of the
manuscript-to-referee matching algorithm, sloppy bid-
ding can have dramatic effects on which referees actu-
ally review which submissions.

Game Theory and Mechanism Design. Some papers focus on strat-

egyproof peer review [11, 19]. Especially, [19] consider scenarios

where reviewers (who are also authors) may bid strategically so as

to influence the assignment. We assume here reviewers bid inde-

pendently from their interest as authors, but are still self-interested

and would like to minimize their effort during both the bidding and

reviewing phases. Finally, market approaches (such as using scrip

money) have been considered for various allocation problems such

as course allocation [3, 5, 17]). Yet we are unaware of a theoretical

or practical application to review assignments.

All of the above points, together with our own observations in

the past ten years or so (i.e., since paper bidding has been commonly

used), lead to the conclusion that the most effective way to improve
the assignment is indeed to improve the input to the assignment
algorithms, rather than fine tuning the algorithms themselves. So
without further ado, we get to work.

2 PRELIMINARIES
Throughout the paper, we denote the sets of PCMs (reviewers) and

papers by N andM , respectively. Furthermore, we denote by n and

m the sizes of these sets, respectively.

Assignments. Each paper j should be ultimately assigned to r j
reviewers, and each PCM i should get exactly ki papers for re-
view. Note that for an assignment to be possible, we must assume∑
i ∈N ki =

∑
j ∈M r j .

A valid fractional partial assignment is a non-negative matrix

X = (xi j )i ∈N , j ∈M that meets the following constraints:

Capacity constraints
∑
j ∈M xi j ≤ ki (every reviewer gets at

most ki papers);
Quota constraints ∀i ∈ N , j ∈ M, xi j ≤ qi j . Typically qi j ∈

{0, 1}, where qi j = 0 meaning that there is a COI. However

for analysis purposes we allow any nonnegative value.

Paper constraints ∀j ∈ M,
∑
i ∈N xi j ≤ r j .

Note that the above constraints are met trivially by the empty

assignment. We say that X is full for PCM i if
∑
j ∈M xi j = ki , and

complete if it is full for all PCMs.

For ease of presentation we assume, unless mentioned otherwise,

that r j = r for all j, that r ≥ 1, and that qi j ≤ 1 for all i ∈ N , j ∈ M .

An assignment is integral if xi j ∈ Z for all i, j.

Bids. A (fractional) bidding profile is a real matrix B =

(fi j )i ∈N , j ∈M , where fi j ∈ R+ is the bid of PCM i ∈ N on paper

j ∈ M . We assume unless explicitly stated otherwise that fi j ∈ [0, 1],

and we always require fi j ≤ qi j (in particular, a PCM cannot place

a bid on a paper if she has a conflict of interest with it). The bid of

PCM i is the vector Bi := (fi j )j ∈M . A bidding profile B is integral if
fi j ∈ {0, 1} for all i, j. When bids are integral we sometimes abuse
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notation by writing Bi as the subset of papers that PCM i bids on.3

We similarly denote by D j := (fi j )i ∈N the demand profile for paper

j (induced by B). In a given profile B, we denote by dj :=
∑
i ∈N fi j

the total demand of paper j, and d := (dj )j ∈M .

An assignment algorithm is a function that takes as input a bid-

ding profileB, and outputs a valid partial assignmentX . We describe

several assignment algorithms in use in Section 5.

Proportional Bidding Scheme. We describe steps of the bidding

scheme we propose. Note that these steps are aligned with the

process outlined in Section 1.1.

(1) For each paper j, the system displays a “price" pj :=

min{1, rdj
} (that is, inversely proportional to the demand

of paper j).

(2) Each PCM i that enters the system submits a bid Bi .

(3) The contribution of PCM i in profile B is defined as the to-

tal price of demanded papers. Formally, cpi :=
∑
j ∈M fi jpj .

Crucially, the prices and thus the contribution will depend

on the bidding profile, so they change dynamically as more

PCMs enter or change their bids.

(4) The system may announce (or enforce) a bidding require-

ment R, such that a bid Bi is sufficient in profile B only if

cpi ≥ R. A bid Bi that meets the requirement R exactly (i.e.

where cpi = R) is called exact.
(5) Like in current bidding systems, reviewers may log in later

on and revise their bid. Unlike current systems, they may

see different prices each time.

(6) Bidding continues until some stopping condition is met, e.g.

all PCMs bid at least once, no bidder wants to revise her bid,

or some deadline has passed.

The output of the bidding mechanism is some final bidding profile

B∗
. When the bidding phase is over, we run some assignment algo-

rithm A, with B∗
and various allocation constraints as input to get

an assignment.

Remark 1. The price pj that a PCM i sees is always the price as if
i is already bidding on paper j, as it should reflect the contribution if
a bid occurs. We demonstrate this in Example 2.1.

Example 2.1. Suppose we have m = 4 papers (a,b, c,d) and
n = 6 reviewers. r = 2 which entails each reviewer should get

k = mr
n =

4

3
papers. We only use integral bids in this example.

• Initially, bids are B1 = {a,b},B2 = {a, c}, all other bids are
empty. This yields d = (2, 1, 1, 0)

• Reviewer 3 logs in. She sees the prices pa =

min{1, r
|Da∪{3} |

} = 2

3
,pb = min{1, r

|Db∪{3} |
} =

min{1, 2
2
} = 1,pc = pd = 1 (the PCM is counted in

the demand, cf. Remark 1). Suppose she bids on {a,b,d}.

• Now Reviewer 4 logs in and sees prices of pa =
2

4
= 1

2
,pb =

2

3
,pc = 1,pd = 1. Suppose he bids on {b,d}, so now demands

are (3, 3, 1, 2).

• Now, Reviewer 2 logs in again, and sees prices of pa =
2

3
,pb =

1

2
,pc = 1,pd =

2

3
.

3
For simplicity we assume that there is only one level of positive integral bids. We

later explain how to extend analysis and simulations to multiple bid levels.

3 PROPORTIONAL MOCK ASSIGNMENTS
In order to analyze the outcome and the bidding behavior, we

must also take into account the assignment algorithm. However,

since most practical assignment algorithms are based on integer

programming, the connection between input (bids) and output

(assignment) is quite complicated and sensitive to small changes

in the input. Thus a PCM cannot readily use them to derive her

beliefs about her assignment. Moreover, the bid-to-assignment (or

the probability of assignment) connection may be both counter-

intuitive, and requires information not available to the bidder, i.e.,

knowledge of the full bidmatrix. Sincewe are interested in incentive

analysis, it is more important to capture the way that PCMs perceive
the effect of their actions, especially when the actual effect may

vary considerably across assignment algorithms and may not even

be known, for example, EasyChair does not reveal what algorithm

they use [12].

To make a rigorous theoretical analysis possible, instead of deal-

ingwith particular assignment algorithms, we describe a (fractional)

mock assignment that captures in an intuitive way the connection

between the bid of a single PCM and her assigned papers. Intu-

itively, the PCM gets more of paper j when bidding positively on j,
when the demand for j is lower, and when she bids on fewer other

papers. We will further assume that the fractional assignment of

paper j to PCM i changes linearly w.r.t. the above factors. This will

allow us to single out a unique mock assignment. Whenever we

focus our attention on a particular PCM, we will use the uppercase

index I , keeping i for contexts where multiple PCMs are considered.

In the remainder of this section and the next one, we consider the

assignment from the point of view of a particular PCM I .
We make a distinction between two cases: if cpI > kI we say

that I overbids; and if cpI < kI we say that she underbids. If cpI = kI
then we say that the bid is exact, and this can be considered both

as a weak overbid or weak underbid.

Similarly, a paper can be either overdemanded (if dj > r ) or
underdemanded (if dj < r ). We thus define:

uj := [r − dj ]+, oj := [dj − r ]+. (1)

Recall that we also defined pj := min{1, rdj
}, thus overdemanded

papers have price pj = 1.

Definition 3.1 (PMA). XI = (xI j )j ∈M is a proportional mock
assignment (PMA) for PCM I w.r.t. input BI = (fI j )j ∈M ,qI =
(qI j )j ∈M ,d = (dj )j ∈M if it is:

full
∑
j ∈M xI j = kI ;

valid For all j ∈ M , xI j ≤ min{r ,qI j };
proportional There is a constant α ≤ 1 such that:

(OB) If the PCM is weakly overbidding, then xI j = α · fI jpj
for all j ∈ M ;

(UB) If the PCM is weakly underbidding, then xI j =
min{qI j , fI jpj + α · uj } for all j ∈ M .

Given an underbidding PMA XI with its constant α , we denote
by QI := {j ∈ M : fI jpj + α · uj > qI j } as the set of strictly
constrained papers. We similarly define Q̃I with a weak inequality,

see Example 3.4.

A few explanations are in order. If I is overbidding, then the

assignment is simply proportional to bids weighted by paper prices.
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If I is underbidding, however, an assignment proportional to bids

weighted by prices may both violate validity (if α is too large)

and fail to be full (if α is too small). In that case, a proportional

assignment will assign first papers for which the reviewer has

placed a bid, weighted by their price, and then completes reviewer

i’s assignment by giving her a fraction of underdemanded papers,

proportionally to their degree of underdemand uj , while making

sure that the quota constraints are not violated.

Existence and uniqueness of PMA. A proportional mock assign-

ment is not guaranteed to exist. We give a necessary and sufficient

condition for its existence and prove that in this case it is unique.

Definition 3.2 (Initial assignment). Define x I j := fI jpj as the

initial (partial) assignment. We say thatX I = (x I j )j ∈M is extendable
w.r.t. input (BI ,qI ,d) if there is a valid and full XI such that xI j ≤
x I j + uj for all j.

The initial partial assignment X I simply assigns each paper

proportionally to the bid and the price, and may assign more than

kI papers to I . Considering the leftovers uj of all underdemanded

papers, assuming extendability means that there is some way to

partially allocate these leftovers, so that I obtains a complete and

valid assignment.

Extendability can be violated in extreme cases, e.g. if I does
not bid at all and still all papers are overdemanded. A sufficient

condition extendability is either that I overbids, or that

kI ≤
∑
j ∈M

min{qI j ,uj }.

Since kI is bounded by 10-15 and the sum on the right hand side

tends to grow linearly with the size of the conference, a violation

is highly unlikely in any practical situation.
4

Thus, for the rest of the paper on we will assume that ex-
tendability holds (for PCM I ).

We next show that a PMA always exists as long as the initial

partial assignment is extendable. Further, in this case the PMA is

unique.

Proposition 3.3. Given bid BI , quotas qI and demands d , there
exists a PMA if and only if the initial assignment X I is extendable.

The proof (in Appendix C) is constructive and relies on a simple

algorithm that roughly proceeds as follows: it first computes the

initial assignment X I ; then, if I is overbidding then α is a simple

normalization factor; if I is underbidding, α is computed in a series

of iterations (at mostm). The details of the algorithms are relegated

to Appendix A. Here we give a small example (the details of how it

is computed by the algorithm are in Appendix B).

Example 3.4 (Proportional Mock Assignment). n = 5, m = 6

(papers are called a,b, c,d, e, f ) r = 2, and all quotas are 1. We

use PCMs with different ki for exposition purposes only. The bids

fi j are shown in Figure 1 (left) and the initial assignmentX is shown

on Figure 1 (right).

PCM 1 is overbidding, and her PMA is x1j = α · f1jpj with α =
60

67
.

PCM 2 is underbidding, and her PMA is xI j = min{qI j , fI jpj+α ·uj }

with α = 2

5
, and the constrained papers are QI = Q̃I = {e}. Thus

4
Not a single violation occurred in any of our simulations, for example.

X1 =

(
40

77

,
30

77

,
24

77

,
60

77

, 0, 0

)
X2 =

(
0,

1

2

,
2

5

,
2

5

, 1,
7

10

)
See Appendix B for the complete exposition of the example.

Note that computing the PMA independently for all PCMs may

not result in a valid assignment, as some papers may be allocated

less or more than r times (see Appendix B). Yet, from the viewpoint

of a particular PCM that does not know the exact bid matrix, or

even the assignment algorithm, this is a reasonable abstraction.

Proposition 3.5. Consider input BI = (fI j )j ∈M ,qI =

(qI j )j ∈M ,d = (dj )j ∈M , and suppose that X I is extendable. Then
the PMA is unique.

The proof is in Appendix C.

PCMs expect that bidding on a paper would increase the chance

of getting this paper. While in actual assignment algorithms there

may be corner cases that violate this, we want to show that the

PMA does follow this natural expectation, which plays a key role

in the game-theoretic analysis.

Definition 3.6 (assignment monotonicity). Consider two bids BI =
(fI j )j , B

′
I = (f ′I j )j for which a (unique) PMA exist, where for

some specific j, f ′I j < fI j whereas all other bids are the same. An

assignment ismonotone in bids if for any such BI ,B′
I , the respective

obtained assignments XI ,X
′
I satisfy:

MON1 x ′I j ≤ xI j ;

MON2 x ′I j′ ≥ xI j′ for all j
′ , j;

That is, PCM I gets no more of paper j and no less of all other

papers.

Proposition 3.7. Both the PMA and the initial assignments are
monotone in bids. Moreover, for the initial assignment MON1 holds
with a strict inequality.

Proposition 3.8. The (unique) PMA is continuous in the bid.

Both proofs are in Appendix C.

4 INCENTIVES
The bidding process can be thought of as a game, where every time

a PCM logs in, she sees the current prices (which reflect current

demand) and reacts with her own bid. Given demands d−I , every
bid BI induces a PMA XI (as I does not know — and cannot know

— the actual assignment), and therefore some expected utility for

PCM I . Crucially, we assume that the quotas qI and capacity kI are
provided externally, and are not part of the strategy of the PCM.

In order to define this utility, we assign a cost CI j reflecting the

inconvenience of reviewing paper j to PCM I . We assume that costs

are generic, i.e. no two papers have the same cost. Taking quotas

and capacities as fixed, we define

cI (BI ,d
−I ) :=

∑
j ∈M

xI jCI j ,

where XI = (xI j )j ∈M is the unique PMA corresponding to bid BI
(recall that we assume the initial assignment is extendable and thus

the PMA exists).
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fi j a b c d e f ki
1 1 1 1 1 2

2 1 1 4/5 1/2 3

3 1 1 1 3

4 1 1 2

5 1 1 1 2

dj 3 4 5 1 4/5 3/2

pj 2/3 2/4 2/5 1 1 1

x i j a b c d e f ubi obi
1 2/3 1/2 2/5 1 17/30

2 1/2 2/5 4/5 1/2 4/5

3 2/3 2/5 1 14/15

4 1/2 2/5 11/10

5 2/3 1/2 2/5 13/30

uj 0 0 0 1 6/5 1/2

Figure 1: Bids (left) an initial assignment (right) in Example 3.4.

A best response of I to d−I is a bid BI such that cI (BI ,d
−I ) ≤

cI (B
′
I ,d

−I ) for all B′
I . Note that a best response always exists since

the strategy sets are compact.

Givend−I , two bidding strategies BI , B
′
I are said to be equivalent

if they induce the same PMA, i.e., XI = X ′
I .

Remark 2. If XI is not full, then the cost is not well defined—
presumably, such a PCM will be asked to review some papers outside
the assignment mechanism. However recall that we explicitly assume
that the initial assignment is extendable to a full assignment, which
is sufficient for the existence of a unique PMA (and in particular full).

4.1 Sincere and exact bids
By genericity, I has a strict preference order over papers. We say

that a bid BI = (fI j )j ∈M is sincere if there is j ′ such that fI j = 1

for all papers that I prefers over j ′, and fI j = 0 for all papers that I
prefers less than j ′.

Note that a sincere bid can be characterized by a single number

bI , meaning that the PCM bids fI j = 1 on her favorite ⌊bI ⌋ papers
and bI − ⌊bI ⌋ on the next paper.

Recall that a bid BI = (fI j )j ∈M is exact under prices (pj )j ∈M ,
5
if∑

j ∈M fI jpj = kI , that is, the PCM neither overbids nor underbids.

Under the genericity assumption, there is a unique sincere exact

bid, where bI = kI . We denote the sincere exact bid of I (w.r.t.

d−I ,qI ,kI ) by b
∗
I .

Observation 4.1. If BI is exact, then xI j = fI jpj . In particular,
if I places a full bid on paper j (fI j = 1) then xI j = pj , i.e., the price
reflects exactly the fraction (or probability) of paper j that PCM I will
get if bidding on the paper.

Observation 4.1 suggests that among all exact bids it is always
best to be sincere. However, it does not rule out the possibility

that the PCM overbids or underbids to improve the set of allocated

papers. Also, changing the bid also changes the prices so the bid

may not remain exact.

Our main theoretical result is that any best response for I is
equivalent to b∗I . The remainder of this section is used to prove this

claim in two steps: first we show that any optimal bid is equivalent

to a sincere bid (Prop. 4.2). Then, we show that among sincere bids

it is always better to be exact.

Proposition 4.2. Suppose that BI is a best response, then BI is
equivalent to a sincere best response.
5
Note that the prices are affected by the entire demand, which in turn depends on the

bid BI .

Proof. Wemeasure the insincerity of a bid BI as follows. Let j ′ =
argminj ∈M :fI j<1CI j and j

′′ = argmaxj ∈M :fI j>0CI j . If j
′ ≥ j ′′ then

IN (BI ) := 0 (bid is sincere). Otherwise, IN (BI ) := j ′′−j ′− fI j′+ fI j′′ ,
We say that strategy B′

i is more sincere than Bi if IN (B′
i ) < IN (BI ).

By continuity, the set of best responses is compact. Thus let BI
be a best response with minimal IN (BI ). We argue that IN (BI ) = 0,

otherwise we can construct an equivalent bid that is strictly more

sincere.

By monotonicity, increasing the demand of j ′ results in x ′I j′ ≥

xI j′ , whereas the allocation of all other papers weakly decreases. If

x ′I j′ = xI j′ then this means B′
I is equivalent to BI but more sincere.

Similarly, if we can decrease fI j′′ without affecting xI j′′ we are done.
Thus assume that both modifications result in a strict increase in

xI j′ and a strict decrease in xI j′′ .

Case I: PCM is weakly overbidding. Let δ ∈ (0,min{1− fI j′ , fI j′′})
sufficiently small (will be specified later). Consider the bid B′

I =

(f ′I j )j ∈M defined by f ′I j′ = fI j′ +δ . This is clearly an overbid, which

results in a new PMA X ′
I with some α ′ = α − ε , where ε = ε(δ ).

Since x ′I j′ > x I j′ , ε > 0.

By continuity, for small ε there is µ = µ(ε) such that setting

B′′
I := ((f ′I j )j,j′′), fI j′′ − µ) results in a PMA X ′′

I with α ′′ = α ′ + ε ,

unless ε is too large (again, α ′′ > α ′
since x ′I j′′ < x I j′′ ). We thus

set δ > 0 sufficiently small so that µ(ε(δ )) exists, and get α ′′ =

α ′ + ε = α . Since X
′′

I j = X I j for all j , j ′, j ′′, and I gets strictly

more of j ′ and strictly less of j ′′, we get cI (B
′′
I ,d

−I ) < cI (BI ,d
−I ),

in contradiction to BI being a best response.

Case II: PCM is strictly underbidding. By assumption, setting

f ′I j′ = fI j′ + δ strictly increases xI j′ , and thus α
′ = α − ε where ε =

ε(δ ) > 0. Note that this entails that j ′ < Q̃I , and thus we can set δ
sufficiently small so that j ′ < Q̃ ′

I either. The exact opposite holds for

decreasing j ′′. What we would want is to do both and keep α at the

same level. However we need to prove that this is possible—that is,

that increasing demand on j ′ does not eliminate strict monotonicity

of xI j′′ . Indeed, failure of strict monotonicity of xI j′′ occurs either
if (a) j ′′ is strictly constrained, or if (b) all papers j with positive

excessuj (except j
′′
itself) are strictly constrained. In all other cases,

decreasing fI j′′ increases kI and thus the assignment of some paper
j , j ′′ strictly increases, which entails strict monotonicity.

However, increasing the demand on j ′ can only make other

papers less constrained, i.e. if j < QI then j < Q ′
I . The only paper

whose positive excess may change by increasing fI j′ is j
′
itself, but

again this can only decrease uj . Thus if we can set f ′I j′′ = fI j′′ − τ
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to reach α ′′ = α − µ with respect to BI , then we can still reach

α ′′ = α ′ − µ (i.e., w.r.t. bid B′
I ) by setting f ′I j′′ = fI j′′ − τ ′.

To conclude the proof, we set µ = ε sufficiently small so that

both τ = τ (µ) and δ = δ (ε) exist (and such that j ′ < Q̃ ′
I ). In the

bid B′′
I = (fI j′ + δ , fI j′′ − τ ′, (fI j )j,j′, j′′), we get that Q

′′
I = QI and

α ′′ = α ′ − µ = α + ε − µ = α . Thus X ′
I is same as XI except it has

strictly more of j ′ and strictly less of j ′′. We get that cI (B
′′
I ,d

−I ) <

cI (BI ,d
−I ), in contradiction to BI being a best response. □

Proposition 4.3. Any best response is equivalent to a sincere and
exact bid.

Proof. We start from an arbitrary sincere best responsebI ∈ R+.
If bI is an overbid, then b ′I < bI reduces the cost, as long as b ′I is
still a weak overbid. This is since by proportionality, the fraction of

the least favorite papers in X I is strictly decreasing. Therefore no

best response can be overbidding.

Suppose now that bI is an underbid. Label papers by increasing

CI j , and denote by j ′ := argminj ∈M :fI j<1CI j the first paper with

less-than-maximal bid (as in the previous proof). Note that j ′ =
⌊bi ⌋ + 1 We define b ′I = bI + δ , where δ > 0 is sufficiently small so

that only paper j ′ is affected, and PCM I is still weakly underbidding

in b ′I .
By monotonicity, x ′

1j′ ≥ xI j′ , whereas x
′
I j ≤ xI j for all other

papers. We argue that for all j < j ′, x ′I j = xI j . This would complete

the proof, as

cI (b
′
I , d

−I ) − cI (bI , d
−I ) =

∑
j
(x ′I j − xI j )CI j = (x ′I j′ − xI j′ )CI j′ +

∑
j> j′

(x ′I j − xI j )CI j

≤ (x ′I j′ − xI j′ )CI j′ +
∑
j> j′

(x ′I j − xI j )CI j′

= CI j′
∑
j≥j′

(x ′I j − xI j ) = CI j′
∑
j
(x ′I j − xI j )

= CI j′ (
∑
j
x ′I j −

∑
j
xI j ) = CI j′ (kI − kI ) = 0.

where the inequality comes from x ′I j − xI j ≤ 0 by monotonicity,

and Cj > Cj′ for all j > j ′.
Indeed, consider some paper j < j ′, and note that fI j = 1. If

pj = 1 then x1j = f1jpj = 1, and this is still the case for x ′
1j . Then,

since x1j ∈ [x1j ,q1j ] = [1, 1], we get x1j = 1 = x ′
1j .

If pj < 1, then uj = 0 (paper is overdemanded). Also note that

the bid on j has not changed and thus

x ′
1j = f ′

1jp
′
j = f1jpj = x1j .

Since x1j ∈ [x1j ,x1j + uj ] = [x1j ,x1j ], we have x
′
1j = x ′

1j = x1j =

x1j , as required. □

4.2 Price-sensitive bids
Consider a bidder facing papers with private costs (2, 3, 4, 5, 6) and

respective prices (0.6, 0.6, 0.15, 1, 0.6). Suppose the bidding require-

ment is R = 2, so a sincere strategy would bid either on the first 3

or first 4 papers.

However in practice, inferring a good estimate of one’s own

private cost requires some effort (e.g. reading the paper’s abstract),

whereas the price in our suggested mechanism is presented explic-

itly. Since papers with a low price have low assignment probability,

and also contribute little to meet the bidding requirement, the PCM

may skip low-price papers such as paper #3 above, and not con-

sider them for bidding at all (or at least not until she exhausted the

high-price papers).

We consider two bidding behaviors that may capture this effect.

Sincere bidding + Costly exploration. Preferring high-price papers
may be due to uncertainty on their true cost. Consider a model

where for each paper j and PCM I , there is a distribution CI j from
which the “true" cost cI j will be realized. During bidding, the PCM

can decide to invest some effort, and then observe the realization

cI j (e.g. by reading the abstract). For simplicity, suppose that the

realization is either 0 or 1, meaning that the paper is a good fit or a

bad fit for the reviewer. In that simple case, CI j is the probability
of a bad fit.

A myopic PCM would maintain a “current bid" which is optimal

according to known costs (explored or expected), and thus exact

and sincere. Then, the PCM will gradually explore papers until

exploration is no longer beneficial.

Suppose that the current optimal (sincere and exact) bid is some

B∗i , whereas after exploring paper j, the new optimal bid is B
(j)
i

(which is also sincere, but according to the revealed cost).

Each paper has some “exploration effort" ej , and some marginal

exploration gain mдj := ci (B
(j)
i ,d

−i ) − ci (B
∗
i ,d

−i ). The optimal

bidding policy is clearly to explore the paper maximizingmдj − ej
as long as this value is positive, and submit bid B∗i once all papers
yield non-positive improvement.

We argue that papers with a higher price should be explored

earlier, ceteris paribus, and thus the PCM is likely to skip more

low-price papers.

Proposition 4.4. The marginal gainmдj is weakly increasing in
pj .

Proof. Denote by G the set of all explored papers that turn out

to be good, i.e. with a known cost of 0. The optimal bid is to bid

on papers from G, and on unexplored paper in increasing order of

CI j ,until the bidding requirement is reached:

∑
j ∈M fI jpj = kI .

Note that since agent I bids are always exact, she receives under
the PMA a fraction of fI jpj of each paper j. To maintain an exact

bid, if she increases fj then she has to decrease her bids on other

papers (by sincerity, on the ones with the largest expected cost).

Denote by z the worst paper with nonzero bid. Note that fI j = 1

for all j < z and fI j = 0 for all j > z (we assume here that papers are

ordered by non decreasing expected costs). There are three cases

when exploring the next paper j:

• fI j = 0. That is, j is not in the current bidding set at all. In this
case, with probability CI j the paper turns out to be bad , i.e.

CI j = 1, and the bid does not change.With probability 1−CI j
the paper turns out to be good. Then it is added to the bidding

set (f ′I j = 1) and pushes out of the bidding set a fraction pj
of the highest-cost papers (possibly including other 0-cost

papers). Denote by y(F ) the total cost of the F most costly

papers in BI , then cI (B
∗
I ,d

−I ) − cI (B
(j)
I ,d

−I ) = y(pj ). Then
the marginal gain when exploring j ismдj = (1 −CI j )y(pj ),
which is monotonically increasing in pj .

• fI j = 1. That is, j < z is in the current bidding set. With

probability 1 −CI j the paper turns out to be good, the bid
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does not change, and the expected cost (after receiving a new

information on paper j) becomes cI (B
∗
I ,d

−I ) − F ·CI j . With

probabilityCI j the paper turns out to be bad and is removed

from the bidding set, making room for the an F fraction of

the least costly papers that are not in the bidding set. In this

case, pj ·CI j is eliminated from cI (B
∗
I ,d

−I ). Now denote by

ŷ(F ) the total cost of these papers, then the cost of the new

bidding set is

cI (B
∗
I ,d

−I ) − pj ·CI j + ŷ(pj ) = cI (B
∗
I ,d

−I ) + F (
ŷ(pj )

pj
−CI j ).

In total

mдj = cI (B
∗
I , d

−I ) − ECI j [cI (B
(j )
I , d−I )] = −(1 −CI j )(−pj ·CI j ) −CI j F (

ŷ(pj )

pj
−CI j )

= pj ·CI j ((1 −CI j ) + (CI j −
ŷ(pj )

pj
)) = FCI j (1 −

ŷ(pj )

pj
)

Therefore

∂mдj

∂pj
= CI j −CI j

∂ŷ(F )

∂F
≥ CI j (1 − 1) = 0,

as required, since
∂ŷ(F )
∂F ≤ maxj′ Ci j′ ≤ 1.

• j = z. We analyze the marginal gain as a sum of two explo-

ration actions: the last paper in the bidding set with price

pj fI j ; and the first paper outside the set with price pj (1− fI j ).
Since both parts are non-decreasing in pj we get the result
from linearity of expectation.

□

That is, cost-wise, it is better to explore papers close to the

decision threshold (high-cost in the bidding set or low-cost out of

the set), and for two papers with a similar uncertainty over their

cost, it is better to explore first the one with the higher price.

Greedy price-sensitive bidding. The “attractiveness" of each paper
is some function that is increasing (linearly) in price and decreasing

(linearly) in private cost. The bidder selects papers greedily by

decreasing attractiveness, until reaching the bidding quota.

The greedy heuristic is easy to apply and similar to how a rational

decisionmakerwould behave under quasi-linear utilities, or in other

contexts of selecting multiple items [4].

4.3 Multiple bid levels
It is both a conceptual and technical question whether a “strong bid"

should be considered differently when computing papers’ prices.

The technical part is easy: we may allow fi j to take any nonneg-

ative value. Thus a PCM i that bids fi j = 2 will get in the initial

assignment twice the amount of paper j than bidder i ′ that bids
fi′j = 1, at any given price. PCM i also contributes more to the

demand.

As for incentive analysis, note that if multi-level bids are allowed,

then the PMA is still well defined with slight modifications (we

need to make sure that the initial assignment does not violate the

quota). Then following almost the same proofs shows that bidders

still have an incentive to be sincere, in the sense that they will give

the maximal possible bid on some t most preferred papers, and 0

bid on all papers after t + 1. The proofs for exact bids also remain

almost.

In practice, various considerations may guide the decision of the

bid strength, such as how competent the PCM believe they are for

this particular review.

4.4 Dynamics and Equilibrium
A behavior of bidder i is a mapping from a profile B and private

costsCi to a new bid B′
i . A profile B is an equilibrium if for all i ∈ N ,

Bi is a best response to d
−I

(note that d−I is induced by B).

Increasing Bids. We say that a sequence of bidding profiles

B0, . . . ,BT is weakly increasing if f t+1i j ≥ f ti j for all i ∈ N , j ∈

M, t < T .
One way to justify increasing bids is that reviewers rarely bother

to eliminate an existing bid. For the rational behavior we can also

deduce this from the properties of the best-response strategy:

Observation 4.5. If in Bt all bidders are sincere and weakly
underbid, and some set of bidders N ′ ⊆ N update their bids by
playing an exact sincere bid, then:

(1) f t+1i j ≥ f ti j for all i ∈ N ′, j ∈ M , and all other bids remain
unchanged;

(2) all prices weakly decrease in Bt+1;
(3) all bidders are sincere and weakly underbid in Bt+1.

Therefore, if the initial bid is sincere and below the bidding re-

quirement (e.g. the empty profile) then by induction the bidding

sequence is weakly increasing. Such a bidding sequence must con-

verge to an equilibrium since bids are bounded. In particular, an

equilibrium exists (recall that this is contingent on our assumption

that a PMA always exists).

5 IN-SILICO EXPERIMENTS
For space all experiments are in the Appendix.

6 DISCUSSION
In this paper we propose a simple alternative bidding mechanism

for reviewers in conferences: for every paper, the reviewers observe

a dynamic “price” that reflects the paper’s demand and updates

throughout the bidding process. We showed via the introduction

of a stylized assignment that changes linearly with the bids (the

PMA), that bidders have an incentive to follow instructions and

sincerely bid on their favorite papers until they reach the bidding

requirement (in terms of overall price of papers).

Interestingly, sincere bidding is not socially favorable. In contrast,
a very simple greedy behavior—where reviewers are less likely

to bid on cheap (overdemanded) papers—is cognitively plausible,

reduces the effort during bidding, and substantially improves the

allocation under a broad range of conditions.

Our suggestions can be very easily implemented in existing con-

ference management platforms such as EasyChair and ConfMaster,

and allow reviewers to obtain a more preferred lot of papers for

less effort. Crucially, we show that the improvement is gradual,

and there is no harm if some of the reviewers ignore paper prices

altogether and just bid as they are used to.

Privacy and bias. One possible concern is that information on the

demand may bias the judgment of the PCMs, or that authors may

be unhappy with showing information about the popularity of their
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paper. We argue that these concerns are unjustified. First, there

is no obvious connection between paper popularity and quality,

as PCMs may bid on a paper either because it is relevant to their

specific interests, because it looks attractive, or because it seems

to be an easy reject(see also Rodriguez et al. [18]). Second, the de-

mand information is shown at a very crude accuracy: the PCM only

observes some arbitrary snapshot, and even then cannot differenti-

ate e.g. a paper with 0 bids from a paper with r bids. Adding the

uniform bootstrap (as we do in the simulations and recommend

doing also in practice) demand makes any such inference even less

likely, especially if we add some noise to it. Finally and perhaps

most importantly, unpopular papers are not damaged by reveal-

ing information on their demand. On a contrary, they are more

likely to get suitable reviewers in our suggested bidding scheme,

whereas in the current system the paper will end up with a possibly

disappointed PCM how did not ask for it.

Next steps. We are currently designing lab experiments that will

help us understand the actual paper-bidding behavior of peoplewith

and without prices. We also plan a field experiment in a medium-

size workshop where part of the program committee will bid via

the suggested bidding scheme.
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A THE FRACTIONAL MOCK ASSIGNMENT
ALGORITHM

The algorithm specifies the final allocation of PCM I , as a function of
her bid (fI j for all j) and total demands of the other PCMs, denoted

d−Ij := dj − fI j (for all j).

ALGORITHM 1: Fractional Mock Assignment for PCM I
Input: bid (fI j )j∈M ; quotas (qI j )j∈M ; capacity kI ; demands without I

(d−I
j )j∈M ; r .

Output: I ’s assignment XI = (xI j )j∈M
∀j ∈ M , set dj := d−I

j + fI j ; // add up the demands of all PCMs

∀j ∈ M , set pj := min{1, r
dj

};

/* Step IA: Initial Assignment. */

∀j ∈ M , set x I j := fI jpj ;
if

∑
j∈M x I j > kI then
/* Step OB: reduce assignment in case of an OverBid.

*/
Set obI :=

∑
j∈M x I j − kI ; // The overbid of PCM I

α :=
kI

kI +obI
;

∀j ∈ M , set xI j := α · x I j ;
end
else

/* Step UB: allocate leftovers of unassigned papers

in case of an UnderBid. */

∀j ∈ M, uj := [r − djpj ]+; // unassigned leftovers of

paper j
∀j ∈ M, xI j = x I j ;
repeat

Q := {j ∈ M : xI j = qI j } ; // constrained papers

k I := kI −
∑
j∈Q qI j −

∑
j∈M\Q x I j ; // Current

available space of PCM I
η := max{k I ,

∑
j∈M\Q uj }; // normalization factor

α :=
k I
η ;

∀j ∈ M \Q, xI j := min{qI j , x I j + α · uj };
Q+ = {j ∈ M : x I j + α · uj > qI j }

until Q+ = ∅;

end
return XI ;

Intuitively, we can think of pj as the portion (or probability) that
a bidder putting a full bid (fi j = 1) on j will get from j in step IA .

The more complicated case is when I is underbidding. Then we

allocate unassigned papers to I , but need to be careful to respect

quota and capacity constraints. Step UB repeatedly tries to allocate

the remaining papers as follows: first, allocate the maximal possible

amount of constrained papers j ∈ Q ; then, for any j ∈ M \ Q ,
allocate the leftovers of paper j (an amount of uj ) proportionally to

the available space that the PCM has (denoted by k I ). As long as

some papers exceed their quota, the algorithm adds them to Q and

repeats the process.

Of course, real assignment algorithms have to deal with fully

allocating all papers, and in particular re-allocate excess papers

from overloaded bidders (even if these papers are overdemanded).

Computing the PMA independently for all PCMs may not result in

a valid assignment, as some papers may be allocated less or more

than r times. Yet, from the viewpoint of a particular PCM that does

not know the exact bid matrix, or even the assignment algorithm,

this is a reasonable abstraction.

B PROPORTIONAL MOCK ASSIGNMENT:
COMPLETE EXAMPLE

We give here full details about how the PMA works on Example

3.4. Recall that n = 5,m = 6 (papers are called a,b, c,d, e, f ) r = 2,

all quotas are 1, and the bids are as follows (left):

fi j a b c d e f ki
1 1 1 1 1 2

2 1 1 4/5 1/2 3

3 1 1 1 3

4 1 1 2

5 1 1 1 2

dj 3 4 5 1 4/5 3/2

pj 2/3 2/4 2/5 1 1 1

All PCMs: Step IA
We first compute the Step I allocation to all PCMs.

x i j a b c d e f ubi obi
1 2/3 1/2 2/5 1 17/30

2 1/2 2/5 4/5 1/2 4/5

3 2/3 2/5 1 14/15

4 1/2 2/5 11/10

5 2/3 1/2 2/5 13/30

uj 0 0 0 1 6/5 1/2

PCM 1: Step OB
PCM 1 is overbidding because

∑
j ∈M f1jpj =

77

30
> k1 = 2. The

final allocation is obtained in Step OB by normalizing so that x1j =
2

2+ 17

30

x1j , which gives the allocation vector(
40

77

,
30

77

,
24

77

,
60

77

, 0, 0

)
.

PCM 2: Step UB
PCM 2 is underbidding because

∑
j ∈M f2jpj =

11

5
< k2 = 3.

The PMA tries to allocate the leftovers uj of papers d , e and f .

The remaining available review space for PCM2 after Step I is k2 =
ub2 =

4

5
, while the global degree of underassignment after Step I

is ud + ue + uf =
27

10
; therefore, su = max{k2,ud + ue + uf } =

27

10
,

and the value of α at this step is
k2
su =

8

27
. We get zd = αud =

1 ·
4/5

27/10
= 8

27
; ze =

6

5

4/5

27/10
= 16

45
; and zf =

1

2

4/5

27/10
= 4

27
, which are

the additional fractions of papers to be tentatively assigned to 2

at this stage, in addition to those already assigned in Step I. This

gives x
2d = x

2d + zd =
8

27
; x2e = x2e + ze =

4

5
+ 16

45
= 52

45
; and

x
2f = x

2f + zf =
1

2
+ 4

27
.

Paper e now exceeds its quota (q2e = 1). Thus e ∈ Q+ in this

iteration and the algorithm goes into a second iteration.
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In the second iteration, e ∈ Q so x2e = 1 and k2 = 3 − 2 − 2

5
= 3

5
.

Also,

∑
j<Q uj = ud + uf =

3

2
thus su = max{ 3

5
, 3
2
} = 3

2
. Therefore

zd =
udk2

su = 2

3

3

5
= 2

5
; and zf =

uf k2

su = 1

2

3

5

2

3
= 1

5
, and the final

assignment is x2 = (0, 1
2
, 2
5
, 0 + 2

5
, 1, 1

2
+ 1

5
), that is,(

0,
1

2

,
2

5

,
2

5

, 1,
7

10

)
Note that it is a PMA for α = 2

5
, and it sums up to k2 = 3.

PCM 3: Step UB
PCM 3 is underbidding because

∑
j ∈M f3jpj =

31

15
< k3 = 3.

At the first iteration, paper f is already assigned to the quota

and the fractional allocation of f to 3 will no longer change. We

have k3 =
14

15
and

∑
j<Q uj =

11

5
, therefore su = 11

5
and α = 14

33
.

The fractional assignment at the end of this iteration is(
2

3

, 0,
2

5

,
14

33

,
28

55

, 1

)
No paper exceeds the quota so this assignment is final. It is a PMA

for α = 14

33
and it sums up to 2.

PCM 4: Step UB
PCM 4 is underbidding because

∑
j ∈M f4jpj =

9

10
< k4 = 2. We

have k4 =
11

10
and

∑
j<Q uj =

27

10
, therefore su = 27

10
and α = 11

27
.

One iteration is enough and leads to the assignment(
0,

1

2

,
2

5

,
11

27

,
22

45

,
11

54

)
It is a PMA for α = 11

27
and it sums up to 2.

PCM 5: Step UB
PCM 5 is underbidding because

∑
j ∈M f5jpj =

47

30
< k5 = 2.

We have k5 =
13

30
, su = 27

10
and α = 13

81
. One iteration is enough

and leads to the assignment(
2

3

,
1

2

,
2

5

,
13

81

,
26

135

,
13

162

)
It is a PMA for α = 13

81
and it sums up to 2.

If we gather all mock assignments to the five PCMs we find that

the number of PCMs assigned to a, b, c , d , e and f are respectively

1.85, 1.88, 1.91, 2.25, 2.11 and 1.98, which shows that the individual

mock assignments are not globally consistent.

C PROOFS

Proposition 3.3. Given bid BI , quotas qI and demands d , there
exists a PMA if and only if the initial assignment X I is extendable.

Moreover, Algorithm 1 always outputs a valid and proportional
assignment. If the initial assignment X I is extendable. Then the out-
put is also full, and thus a PMA. In particular, the set of weakly

constrained papers Q̃I is the set Q that Alg. 1 reaches in the last

iteration.

Proof. First note that the algorithm must terminate since at

least one new item is added to Q at each step.

Note that proportionality holds by construction, as the algorithm

uses the same α for all papers, namely the value of α at the last

iteration.

For validity, note that for any paper j, at most r is allocated

since zj =
uj ·k I
η ≤ uj . If I is underbidding, then xI j ≤ qI j by

construction. If I is overbidding, note that fI j ≤ qI j and pj ≤ 1,

so Step IA does not violate the quota. Step OB only reduces the

allocation.

It is left to show that the output assignment XI = (xI j )j ∈M is

full whenever X I is extendable.

If I is overbidding then∑
j ∈M

xI j =
∑
j ∈M

x I j
kI

kI + obI
=

kI
kI + obI

∑
j ∈M

x I j = kI .

If I is underbidding, then first we can see that allocation does

not exceed kI . Let xI j obtained in the last iteration of the algorithm.

Because this is the last iteration,Q+ = ∅, i.e., x I j + αuj ≤ qI j holds
for all j ∈ M \Q .∑

j ∈M
xI j =

∑
j ∈Q

qI j +
∑

j ∈M\Q

min(qI j ,x I j + αuj )

=
∑
j ∈Q

qI j +
∑

j ∈M\Q

xI j + αuj

= (kI − k I ) + k I
1

η

∑
j ∈M\Q

uj

≤ (kI − k I ) + k I
1∑

j ∈M\Q uj

∑
j ∈M\Q

uj

= kI − k I + k I = kI

Further, if the inequality is strict, this means that k I >∑
j ∈M\Q uj . Let X̂I be an arbitrary extension of X I (in particu-

lar valid and full), then for all j ∈ M , x̂I j ≤ x I j + uj . Also, since X̂I
is valid, x̂I j ≤ qI j .

Putting the inequalities together

kI −
∑
j ∈Q

qI j −
∑

j ∈M\Q

x I j = k I >
∑

j ∈M\Q

uj ⇒

kI >
∑
j ∈Q

qI j +
∑

j ∈M\Q

(x I j + uj ) ≥
∑
j ∈M

min{qI j ,x I j + uj } ≥
∑
i ∈M

x̂I j ,

which means that X̂I is not full, in contradiction to our assumption

that X I is extendable. □

Proposition 3.5. Consider input BI = (fI j )j ∈M , (qI j )j ∈M , (dj )j ∈M ,
and suppose that X I is extendable. Then the PMA is unique.

Proof. For overbidders this is obvious, as any change in α will

violate the full requirement.

For underbidders, we need to show first that there are no two

PMAs with different constrained sets. Assume towards a contradic-

tion that there are two distinct PMAs XI ,X
′
I .
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Recall that Q̃I = {j ∈ M : fI jpj +α ·uj ≥ qI j } is the set of weakly

constrained papers. Suppose there is some paper a ∈ Q̃ ′
I \ Q̃I . Then

xI a = x I a + αua < qI a since a < Q̃I , and x
′
I a = qI a ≤ x I a + α

′ua .

Thus α < α ′
. This in particular entails that Q̃I ⊆ Q̃ ′

I . We then get

that

kI =
∑
j ∈M

xI j =
∑
j ∈Q̃I

qI j +
∑

j ∈Q̃ ′
I \Q̃I

(x I j + αuj ) +
∑

j ∈M\Q̃ ′
I

x I j + αuj

<
∑
j ∈Q̃I

qI j +
∑

j ∈Q̃ ′
I \Q̃I

qI j +
∑

j ∈M\Q̃ ′
I

(x I j + αuj )

(since Q̃ ′
I \ Q̃I , ∅)

=
∑
j ∈Q̃ ′

I

qI j +
∑

j ∈M\Q̃ ′
I

(x I j + αuj )

≤
∑
j ∈Q̃ ′

I

x ′I j +
∑

j ∈M\Q̃ ′
I

(x I j + α
′uj ) =

∑
j ∈M

x ′I j = kI ,

which is a contradiction. Then, two PMAs with the same Q̃I and

different α cannot be both full. □

Proposition 3.7. Both the PMA and the initial assignments are
monotone in bids. Moreover, for the initial assignment MON1 holds
with a strict inequality.

Proof. Without loss of generality, we prove for j = 1. Denote

δ = fI1 − f ′I1 > 0, then d ′
1
= d1 − δ . Without loss of generality, by

continuity of the Step IA allocation, we may assume that PCM I is
either weakly overbidding in both BI ,B

′
I , or weakly underbidding

in both.
6
We similarly assume that either paper 1 is weakly overde-

manded in both bids (d1 > d ′
1
≥ r ), or weakly underdemanded in

both (r ≥ d1 > d ′
1
).

For paper 1, consider the case where r ≤ d ′
1
< d1. Then p1 =

r
d1
,

p′
1
= r

d ′
1

and

f ′I1p
′
1
≤ (fI1 − δ )

r

d ′
1

= r
fI1 − δ

d1 − δ
< r

fI1
d1
= fI1p1,

where the inequality is since
a−x
b−x <

a
b as long as a < b and x > 0,

and since fI1 ≤ r < d1 Next consider r > d1 > d ′
1
, then p′

1
= p1 = 1

and

f ′I1p
′
1
= fI1 − δ < fI1 = fI1p1.

In either case, we have

x ′I1 = f ′I1p
′
1
< fI1p1 = x I1. (2)

For all j , 1, we have x ′
1j = x1j . This already shows that Step IA

is monotone.

We are going to consider separately the case where the PCM is

overbidding and the case where the PCM is underbidding. Note that

since a PMA is full, MON2 entails MON1, and thus it is sufficient

to prove MON2.

PCM is overbidding in both BI ,B
′
I : i.e., obI > ob ′I ≥ 0 holds.

We have that for all j , 1,

x ′I j = x ′I j
kI

kI + ob
′
I
= x I j

kI
kI + ob

′
I
> x I j

kI
kI + obI

= xI j . (3)

6
If both obI > 0 andub′I > 0 hold, we can break the move into two parts by choosing

δ appropriately.

PCM is underbidding in both BI ,B
′
I : Denote ε := x I1 − x ′I1.

Note that

u1 = r − p1d1 = r −min{r ,d1} = max{0, r − d1}.

More precisely, if paper 1 is overdemanded, then u ′
1
= 0 = u1. If

paper 1 is underdemanded, then ε = fI1− f ′I1 = δ andu ′
1
= r −d ′

1
=

r − (d1 − δ ) = u1 + δ = u1 + ε . In either case, u ′
1
≤ u1 + ε .

We argue that α ′ ≥ α . Otherwise, assume by contradiction, that

α ′ < α holds. By the full property and by proportionality of the

PMA,

kI =
∑
j ∈M

xI j =
∑
j,1

min{qI j ,x I j + αuj } +min{qI1,x I1 + αu1},

and

kI =
∑
j ∈M

x ′I j =
∑
j,1

min{qI j ,x I j + α
′uj } +min{qI1,x I1 − ε + α ′u ′

1
}

≤
∑
j,1

min{qI j ,x I j + α
′uj } +min{qI1,x I1 − ε + α ′(u1 + ε)}

≤
∑
j,1

min{qI j ,x I j + α
′uj } +min{qI1,x I1 + α

′u1}

=
∑
j ∈M

min{qI j ,x I j + α
′uj } <

∑
j ∈M

min{qI j ,x I j + αuj } = kI

which is a contradiction. The strict inequality in the last line is

since there must be unconstrained papers for which α applies, or

else α ′ = α vacuously. Therefore, for all j , 1,

x ′I j = min{qI j ,x I j + α
′uj ) ≥ min{qI j ,x I j + αuj ) = xI j ,

showing MON2 (and thus MON1).

□

Proposition 3.8. The (unique) PMA is continuous in the bid.

Proof. The prices and thus the initial assignment X I change

continuously with the demand. Therefore α must change continu-

ously when I is overbidding, and also when I is underbidding as

long as the set of constrained papers remains the same. We only

need to verify that α does not change abruptly when a new paper

becomes constrained.

This occurs exactly when qI j = x I j + αuj for some paper j,

w.l.o.g. paper 1, i.e., 1 ∈ Q̃I \QI . Suppose first that paper 1 is treated

as unconstrained (1 < Q̃I ).Then since the PMA is full, α is such that∑
j ∈Q̃I

qj +
∑

j ∈M\Q̃I

(x I j + αuj ) = kI .

If we treat paper 1 as unconstrained (Q̃ ′
I := Q̃I \ {1}), then again

to obtain a full assignment, α ′
is such that

kI =
∑
j ∈Q̃ ′

I

qj+
∑

j ∈M\Q̃ ′
I

(x I j+α
′uj ) =

∑
j ∈Q̃ ′

I

qj+
∑

j ∈M\Q̃I

(x I j+α
′uj )+(x I1+α

′u1).
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We therefore have that:

0 = kI − kI = q1 − (x I1 + α
′u1) +

∑
j ∈M\Q̃I

(αuj ) −
∑

j ∈M\Q̃I

(α ′uj )

= q1 − (x I1 + α
′u1) + (α − α ′)

∑
j ∈M\Q̃I

uj

= (x I1 + αu1) − (x I1 + α
′u1) + (α − α ′)

∑
j ∈M\Q̃I

uj

= (α − α ′)
∑

j ∈(M\Q̃I )∪{1}

uj .

Then either

∑
j ∈(M\Q̃I )∪{1}

uj = 0, in which case α is meaningless

(no excess papers to allocate), or α ′ = α , as required. □

D EMPIRICAL RESULTS
In order to test the effect of price-based bidding, we simulated PCMs

that interact with a bidding system. The PCMs observe dynamic

paper prices and bid in turn. To keep simulations as realistic as

possible, we used bidding data from real conferences to generate

PCMs’ costs and behaviors.

The hypothesis we want to verify is that price-based bidding

results in a better bidding matrix (with bids being more balanced

across papers, and in particular, less underdemanded papers), which

in turn leads to a better assignment, both from the point of view of

reviewers (reviewer costs are lower) and papers (fewer papers are

assigned to some PCM who did not bid for them – which suggests

that papers are better reviewed).

D.1 Setup
Datasets. We use all 5 bidding datasets available on PrefLib [14,

15] (marked DS1-DS5). In addition, we used 3 random samples in

varying proportions from the AAAI’17 bidding dataset (marked

DSA1-DSA3). In all datasets, we use r = 3. Every bid in the input

has up to three levels, that can be interpreted as “strong bid", “weak

bid", and “no bid".

Private Costs. From each instance (original bid matrix) in Table 2

we derived a cost matrix and a quota matrix as follows. For papers

with COI we set qi j = 0 and otherwise qi j = 1.
7
For the other

papers, we generated costs in the ranges [0, 1] for strong bid, [1, 2]

for a weak bid, and [2, 8] for a no bid, so a stronger bid in the

input file always indicates a higher preference. As these ranges are

somewhat arbitrary, we also present metrics that are independent

of the numerical costs.

Bidding scheme and PCM behavior. Recall that R is the bidding

requirement for each PCM. We use integral bids since this is more

realistic. In the fixed bidding scheme, we considered the following

PCM behaviors. All use integral bids.

original The PCM bids exactly as in the original PrefLib file.

uniform The PCM bids on the R papers with lowest cost.

In the price bidding scheme, we let any PCM bid exactly once, in

random order. Since as long as there are few bidders the demands are

too low to induce an informative price, we use a “virtual bootstrap

7
We did not have the COI of AAAI’17.

bid": every PCM starts with a virtual bid of
k
m on each paper, which

entails an initial demand of exactly r for each paper. This virtual

bid is replaced by her real bid when she acts. We update the prices

every 5 bids.
8

We also use the greedy price-sensitive behavior analyzed in

Section 4.2:

greedy The PCM bids on papers in increasing (Ci j − β · pj ) order,
until their cumulative price reaches or exceeds R. Unless
specified otherwise, we use β = 2.

All behaviors only decide whether to bid positively or not. COI

declarations are identical to what they are in the original PrefLib

file. When the PCM chooses to bid on a paper, the strength of the

bid (needed for the assignment algorithm) is the same as in the

original PrefLib file. For the Uniform and Greedy behaviors, we

also varied the bidding requirement R.
We emphasize that the bid strength was used only for calculating

the final assignments. The demands and prices during the bidding

process considered every positive bid as 1.

Evaluation. To evaluate the benefit of the proportional price

scheme, we simulated different PCM behaviors using the same

private costs generated from the datasets above. We then used

standard assignment algorithms to match the papers. Following

Garg et al. [8] as well as Lian et al. [12] and implementations from

Aziz et al. [2] we used the following algorithms which have been

proposed in the literature for discrete allocation. The Utilitarian

and Rank Maximal algorithm have been used in real conference

assignment (it is most likely that the Utilitarian algorithm is used

by EasyChair, one of the largest conference management website;

see footnote in Lian et al. [12]). We highlight that our PMA plays

no role in the empirical evaluation and was used only for analysis

purposes.

Utilitarian. The Utilitarian assignment algorithm takes a set of

bids and returns the assignment that maximizes the sum of

bids (utilities) of the papers assigned to each PCM.

Egalitarian. The Egalitarian assignment algorithm takes a set of

bids and returns the assignment that maximizes the sum of

bids (utility) of the least well-off PCM.

Rank Maximal. The Rank Maximal assignment algorithm ignores
the value of the bids of the PCMs and only considers the

ordinal rankings of the PCMs. It returns an assignment such

that for each PCM i , the assignmentXi maximizes the lowest

ranked paper received. This mechanism was studied and

highly advocated for by Garg et al. [8].

Our results show that findings are similar across different assign-

ment algorithms, we thus present the results mainly for the Util-

itarian algorithm. Since assignments are always in {0, 1}, we use

Xi ⊆ M to denote the set of papers assigned to i . Recall also that

Bi = {j ∈ M : fi j > 0}.

Having the assignmentX , we measure how good it is using three

metrics:

Social Cost The average cost to a PCM. Formally,

1

n
∑
i ∈N

∑
j ∈M Ci jxi j ;

8
Varying the number of rounds between price updates had almost no effect on the

results.
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name m n bids / PCM strong bids/ PCM k = mr
n < r bids 0 bids ≥ 10 bids

DS1 176 146 8.9 5.6 3.6 28 6 49

DS2 52 24 14.3 8.5 6.1 4 0 14

DS3 54 31 10.4 5.2 5.2 18 3 15

DS4 442 161 17.6 5.1 8.2 62 8 91

DS5 613 201 21.1 6.3 9 125 30 155

DSA1 600 400 6.6 4 4.5 213 51 47

DSA2 1200 300 12.3 7.8 12 621 147 36

DSA3 2000 200 22.7 13.7 30 1264 362 16

Table 2: Anonymized bidding datasets used in our simulations.

Fraction of fulfilled bids The average (across PCMs) of
|Xi∩Bi |
|Bi |

.

A low number indicates the PCM failed to obtain many of

her requested papers.

Fraction of assigned papers w/o bid The average (across

PCMs) of
|Xi \Bi |
|Xi |

. A high number indicates that the PCM

was assigned many papers she did not bid for.

The first metric is the simplest but is sensitive to the way we gener-

ated to private costs. The latter twometrics (that are complementary

to each other) can be thought of as recall and false discovery rate

(complement of precision), respectively. The third one is particularly

important, since papers with missing bids are assigned essentially

at random, and therefore substantially decrease the review quality

and will perhaps require manual re-assignment in practice. We

repeated the process 5-20 times and calculated the average of each

evaluation metric.

D.2 Results
Social cost. Table 3 compares the social cost obtained under the

Original bidding behavior, with the social cost obtained under the

proportional price scheme with the greedy behavior. It can be

clearly seen that the latter substantially reduces the social cost,

especially for the large datasets. In fact the only dataset where this

is not true is the DS2, which is both tiny and has no problem of

orphan papers in the first place (see Table 2).

We next turn to study what contributes to the improvement in

the assignment.

Recall-precision tradeoff. A major factor that affects the assign-

ment is the total number of bids. We therefore compared the Greedy

behavior to the Uniform behavior, while varying the bidding re-

quirement R in both. On Figure 2 we can see that, as expected,

increasing the bidding requirement results in a lower fraction of

assigned papers without bid (higher precision), and a lower fraction

of fulfilled bids (lower recall).

More importantly, the graphs highlight the benefits of the pro-

portional price scheme. First, the recall and precision under the

greedy behavior are substantially better than under the uniform

behavior. Second, this is obtained with much fewer bids and thus

presumably less effort on behalf of the PCM. Finally, in the current

(no price) bidding scheme, it is difficult to decide how to set the

requirement R, or predict how PCMs will conform, whether in the

price scheme, setting R = k is useful as a reasonable anchor.

Sensitivity to behavior. Since we cannot control the behavior

of the PCMs, it is important to check that the results are not too

sensitive to small changes in the behavior. We therefore varied the

parameter β in the greedy behavior (recall that higher β means the

PCM will lean more towards ignoring low-price papers), as well as

the fraction of PCMs who comply with the price-scheme bidding

instructions (non-compliant PCMs follow the Original behavior).

We can see that the quality of assignment gradually improves

as the sensitivity to prices (Figure 3, left) increase. This pattern

means, perhaps counter-intuitively, that strictly following a sincere

behavior (where β = 0) is not ideal from a social perspective, as it

requires to bid on medium-ranked-but-highly-demanded papers

that are likely to fit better some other PCM.

As for the compliance rate, as more PCMs switch to greedy bids

the assignment improves in general (Figure 3, middle and right),

but we can also see in the right figure that this only slightly hurts

PCMs who choose to ignore the prices altogether, as can be seen

from the very shallow increase in the cost for original PCMs.

E ADDITIONAL EMPIRICAL RESULTS
In this appendix we further show that our empirical findings are

consistent across datasets and assignment algorithms.

Figures 4 and 5 show the recall and precision under both schemes

for different bidding requirements. Results are similar to what we

see in the main text.
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Dataset DS1 DS2 DS3 DS4 DS5 DSA1 DSA2 DSA3

Utilitarian algorithm

Original 4.9 6.5 8.8 14.8 15.5 9 27 81.3

Greedy 4.6±0.11 7.5±0.22 8.2±0.16 11±0.1 11.8±0.09 5.6±0.04 15.4±0.09 42.9±0.09

Egalitarian algorithm

Original 5.3 8.2 9.4 15.1 17 9.3 51.1 134.2

Greedy 4.7±0.15 8.3±0.35 8.8±0.25 11.7±0.62 12±0.21 6.5±0.9 29.7±0.31 73.2±0.64

Rank-Maximal algorithm

Original 5 6.5 8.7 15 15.4 9 26.7 79.6

Greedy 4.6±0.08 7.5±0.21 8.1±0.16 11.1±0.12 11.7±0.05 5.7±0.27 15.3±0.16 42.8±0.11

Table 3: A comparison of the social cost under original bids and the proportional price scheme, with all three assignment
algorithms. We compare the Original bids and the Proportional price scheme (with the Greedy behavior and R = k). We add a
confidence interval of 2 standard deviations due to the random bidding order of the greedy behavior.

Figure 2: Assignment vs. bids. The top figures show the quality of the assignment obtained via the Utilitarian algorithm,
under the three behaviors we consider. The number above each bullet is the average number of positive bids per PCM. The
highlighted ‘Greedy’ bullet marks the outcome for R = k . The bottom figures show the assignments with the Rank-Maximal
algorithm.
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Figure 3: On the left, the effect of varying the parameter β in the greedy behavior (see labels on bullets). On the two right
figures, we see the effect of increasing the compliance rate. The bullet labels in the middle figure (and the X-axis in the right
figure) show the fraction of PCMs who follow the greedy behavior.

Figure 4: The tradeoff curves of the Egalitarian assignment for DS1 and DSA1. The number above each bullet is the average
number of bids per PCM.
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Figure 5: The tradeoff curves of the Utilitarian assignment for all remaining datasets (DS1 and DSA1 are shown in the main
text). The number above each bullet is the average number of bids per PCM.
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