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ABSTRACT
Civic crowdfunding (CC) is a popular medium for raising funds

for civic projects from interested agents. With Blockchains gaining

traction, we can implement CC in a reliable, transparent, and secure

manner with smart contracts (SCs). The fundamental challenge in

CC is free-riding. PPR, the proposal by Zubrickas [23] of giving

refund bonus to the contributors, in the case of the project not get-

ting provisioned, has attractive properties. However, as observed

by Chandra et al. [10], PPR faces a challenge wherein the agents

defer their contribution until the deadline. We define this delaying

of contributions as a race condition. To address this, their proposal,

PPS, considers the temporal aspects of a contribution. However,

PPS is computationally complex, expensive to implement as an SC,

and it being sophisticated, it is difficult to explain to a layperson.

In this work, our goal is to identify all essential properties a refund

bonus scheme must satisfy in order to curb free-riding while avoid-

ing the race condition. We prove Contribution Monotonicity and

Time Monotonicity are sufficient conditions for this. We propose

three elegant refund bonus schemes satisfying these two conditions

leading to three novel mechanisms for CC - PPRG, PPRE, and PPRP.

We show that PPRG is the most cost-effective mechanism when

deployed as an SC. We show that under certain modest assump-

tions on valuations of the agents, in PPRG, the project is funded at

equilibrium.

1 INTRODUCTION
Crowdfunding is the practice of funding a project by raising volun-

tary contributions from a large pool of interested participants and

is an active area of research [5, 6, 17, 20]. The participants are in-

centivized to contribute towards crowdfunding for private projects

by offering them rewards. Using crowdfunding in order to raise

funds for civic (non-excludable) projects, however, introduces the

free-riding problem – since we cannot exclude non-contributing

participants from enjoying the benefits of the public project. Thus,

strategic participants, henceforth agents, may not contribute. If we

can address this challenge, civic crowdfunding (CC) can lead to

greater democratic participation. It also contributes to citizens’ em-

powerment by allowing them to increase their well-being by solving
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societal issues collectively. In this paper, we focus on solving the

challenge of free-riding in CC implemented using blockchain-based

smart contracts.

With the advancement of the blockchain technology, CC projects

are now being deployed using smart contracts (SC). A smart con-

tract is a computer protocol intended to digitally facilitate, verify,

or enforce the negotiation or performance of a contract [18]. Since

a crowdfunding project as an SC is on a trusted publicly distributed

ledger, it is open and auditable, making the contributions of the

agents and the execution of the payments transparent as well as

anonymous. Besides, as there is no need for any centralized, trusted

third party, this reduces the cost incurred in setting up the project.

WeiFund [3] and Starbase [19] are examples of decentralized crowd-

funding platforms on public blockchains like Ethereum. In this paper,

our focus is to study game-theoretic challenges in CC, especially

over a blockchain. Our work builds on the literature, which stud-

ies the lack of proper incentives for contributions towards public

goods. Over the years, researchers have addressed such interaction

as a game and analyzed equilibrium strategies of the agents in it

[7, 10, 11, 24].

In the baseline approach, the social planner uses the voluntary

contribution mechanism with a provision point, provision point
mechanism (PPM) [7]. The social planner sets up a target amount,

referred to as the provision point. If the net contribution by the

agents crosses this provision point, the social planner executes the

project. We call this as provisioning of the project. If the provision

point is not reached, we refer to it as the project being under-
provisioned. In the case of under-provisioning, the social planner

returns the contributions. PPM has a long history of applications.

However, it consists of several inefficient equilibria [7, 8, 16].

Zubrickas proposes the Provision Point mechanism with Refund

bonus (PPR) in which the author introduces an additional refund
bonus to be paid to the contributing agents, along with their contri-

butions, in the case of under-provisioning of the project [24]. This

refund bonus induces a simultaneous move game in PPR, in which

the project is provisioned at equilibrium. As observed by Chandra

et al. [10], PPR may fail in online settings such as Internet-based

platforms (e.g., [21, 22]) since in such a setting, an agent can observe

the current amount of funds raised. Hence, in online settings, strate-

gic agents in PPR would choose to defer their contributions till the

end to check the possibility of free-riding and would contribute

only in the end in anticipation of a refund bonus. Such postpone-

ment in contributions leads to a scenario where every strategic

agent competes for a refund bonus at the deadline. We refer to this

https://doi.org/doi
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scenario as a race condition. In online settings, as the agents can

observe the history of the contributions, it induces a sequential

game, and hence, we refer to these settings as sequential settings.
Provision Point mechanism with Securities (PPS) by Chandra et

al. [10] introduces a class of mechanisms using complex prediction

markets [4] which incentivizes an agent to contribute as soon as

it arrives at the platform, thus avoiding the race condition. The

challenge with the practical implementation of sophisticated mech-

anisms such as PPS is, as it uses complex prediction markets, it is

not only difficult to explain to a layperson but also computationally

expensive to implement, primarily as an SC.

The introduction of the refund bonus is vital in these mech-

anisms for CC as it incentivizes agents to contribute and helps

avoid free-riding. Hence, in this paper, we focus on provision point

mechanisms with a refund bonus. Our primary goal is to abstract

out conditions that refund bonus schemes should satisfy to avoid

free-riding as well as the race condition. We believe that such a

characterisation would make it easier to further explore simpler as

well as computationally efficient mechanisms for CC. Towards this,

we introduce, Contribution Monotonicity and Time Monotonicity.
Contribution monotonicity states that an agent’s refund should

increase with increase in its contribution. Further, time monotonic-

ity states that an agent’s refund should decrease if it delays its

contribution. We prove these two conditions are sufficient to pro-

vision a public project via crowdfunding in a sequential setting at

equilibrium and also to avoid the race condition.

We propose three elegant refund bonus schemes which satisfy

the above two conditions. These schemes are straightforward to ex-

plain to a layperson, and are computationally efficient to implement

as an SC. With these three schemes, we design novel mechanisms

for CC, namely Provision Point mechanism with Refund through Geo-
metric Progression (PPRG); Provision Point mechanism with Refund
based on Exponential function (PPRE), and Provision Point mecha-
nism with Refund based on Polynomial function (PPRP). We analyze

the cost-effectiveness of these mechanisms, as well as PPS, when

deployed as SCs and show that PPRG is the most cost-effective. We

measure the performance of these mechanisms by provision accu-
racy, the fraction of the projects that are successfully provisioned

using the mechanism. We simulate PPRG, PPRE, PPRP, and PPS

and show that PPRG has a similar provision accuracy as PPS.

Contributions.

• We define Contribution Monotonicity (Condition 1) and Time

Monotonicity (Condition 2) for refund bonus schemes. We prove

that it is sufficient for the scheme to satisfy these conditions to

ensure that it can implement crowdfunding in sequential setting

such that the project is provisioned at equilibrium (Theorem 4.1).

• We design three novel mechanisms for CC, PPRG, PPRE and

PPRP based on refund bonus schemes satisfying Condition 1

and Condition 2. We show that PPRG is highly cost-efficient in

comparison to PPS, PPRE and PPRP as it consumes significantly

less gas when implemented as a smart contract (Section 4.3).

• We identify a set of strategies which are sub-game perfect for

PPRG (Theorem 5.1).

• We simulate PPRG, PPRE, PPRP, and PPS and show that PPRG

has similar provision accuracy as PPS (Section 6).

2 PRELIMINARIES
We focus on Civic Crowdfunding (CC) which involve provision-

ing of projects without coercion where agents arrive over time

and not simultaneously i.e., CC in a sequential setting. Similar to

[7, 10, 24], we also assume that apart from knowing the history

of contributions, i.e., the provision point and the total amount re-

maining towards the project’s provision at any time, neither agents

have any information regarding the project’s provision nor do they

know about how many agents are yet to arrive or the sequence in

which the agents arrive. Thus, every agent’s belief is symmetric

towards the project’s provision.

2.1 Model
A social planner (SP) puts a proposal for crowdfunding of a civic

project 𝑃 on web-based crowdfunding platform; that is, we are

dealing with sequential settings. SP seeks voluntary contributions

towards it. The proposal specifies a target amount 𝐻 necessary for

the project to be provisioned, referred to as the provision point. It
also specifies deadline (𝑇 ) by which the funds need to be raised.

If the target amount is not achieved by the deadline, the project

is not provisioned, which we refer to as the project being under-

provisioned. In the case of under-provisioning, the SP returns the

contributions.

A set of agents 𝑁 = {1, 2, . . . , 𝑛} are interested in the crowd-

funding of 𝑃 . An Agent 𝑖 ∈ 𝑁 has value 𝜃𝑖 ≥ 0 if the project is

provisioned. It arrives at time 𝑦𝑖 to the project, observes its val-

uation (𝜃𝑖 ) for it as well as the net contribution till 𝑦𝑖 . However,

no agent has knowledge about any other agent’s arrival or their

contributions towards the project.

Agent 𝑖 may decide to contribute 𝑥𝑖 ≥ 0 at time 𝑡𝑖 , such that

𝑦𝑖 ≤ 𝑡𝑖 ≤ 𝑇 , towards its provision. Let 𝜗 =
∑𝑖=𝑛
𝑖=1

𝜃𝑖 be the total

valuation, and 𝐶 =
∑𝑖=𝑛
𝑖=1

𝑥𝑖 be the sum of the contributions for the

project. We denote ℎ𝑡 as the amount that remains to be funded at

time 𝑡 .

A project is provisioned if 𝐶 ≥ 𝐻 and under-provisioned if

𝐶 < 𝐻 , at the end of deadline 𝑇 . SP keeps a budget 𝐵 aside to be

distributed as a refund bonus among the contributors, if the project

is under-provisioned. This setup induces a game among the agents

as the agents may now contribute to get a fraction of the budget 𝐵

in anticipation that the project may be under-provisioned.

Towards this, let 𝜎 = (𝜎1, . . . , 𝜎𝑛) be the vector of strategy profile
of every agent where Agent 𝑖’s strategy consists of the tuple 𝜎𝑖 =

(𝑥𝑖 , 𝑡𝑖 ), such that 𝑥𝑖 ∈ [0, 𝜃𝑖 ] is its voluntary contribution to the

project at time 𝑡𝑖 ∈ [𝑦𝑖 ,𝑇 ]. We use the subscript −𝑖 to represent

vectors without Agent 𝑖 . The payoff for an Agent 𝑖 with valuation

𝜃𝑖 for the project, when all the agents play the strategy profile 𝜎

is 𝜋𝑖 (𝜎 ;𝜃𝑖 ). Note that, in this work, we assume that every agent

only contributes once to the project. We justify this assumption

while providing the strategies for the agents (Section 5.1). We leave

it for future study to explore the effect of splitting of an agent’s

contribution to the project’s provision and its individual payoff.

Let I𝑋 be an indicator random variable which takes the value

1 if 𝑋 is true and 0 otherwise. Further, let 𝑅 : 𝜎 → R𝑛 denote the

refund bonus scheme. Then the payoff structure for a provision

point mechanism with a refund bonus scheme 𝑅(·) and budget 𝐵,
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for every Agent 𝑖 contributing 𝑥𝑖 and at time 𝑡𝑖 , will be

𝜋𝑖 (𝜎 ;𝜃𝑖 ) = I𝐶≥𝐻 (𝜃𝑖 − 𝑥𝑖 ) + I𝐶<𝐻 (𝑅𝑖 (𝜎)) , (1)

where 𝑅𝑖 (𝜎) is the share of refund bonus for Agent 𝑖 as per 𝑅(𝜎)
such that𝑅(𝜎) = (𝑅1 (𝜎), . . . , 𝑅𝑛 (𝜎)).We use𝑅(·) to denote a refund
bonus scheme and 𝑅𝑖 (·) to denote Agent 𝑖’s share of the refund

bonus as per 𝑅(·) whenever the inputs are obvious.

2.2 Important Game Theoretic Definitions
The following definitions are required for the understanding of the

results presented in this paper.

Definition 2.1 (Pure Strategy Nash Equilibrium (PSNE)). A strat-

egy profile 𝜎∗ = (𝜎∗
1
, . . . , 𝜎∗𝑛) is said to be a Pure Strategy Nash

equilibrium (PSNE) if for every Agent 𝑖 , it maximizes the payoff

𝜋𝑖 (𝜎∗;𝜃𝑖 ) i.e., ∀𝑖 ∈ 𝑁 ,

𝜋𝑖 (𝜎∗𝑖 , 𝜎
∗
−𝑖 ;𝜃𝑖 ) ≥ 𝜋𝑖 (𝜎𝑖 , 𝜎∗−𝑖 ;𝜃𝑖 ) ∀𝜎𝑖 ,∀𝜃𝑖 .

The strategy profile for the Nash Equilibrium is useful in a simul-

taneous move game. However, for sequential settings, where the

agents can see the actions of the other agents, they may not find

it best to follow the PSNE strategy. For this, we require a strategy

profile which is the best response of every agent at any time dur-

ing the project i.e., the best response for every sub-game induced

during it. Such a strategy profile is said to be a Sub-game Perfect
Equilibrium.

Definition 2.2 (Sub-game Perfect Equilibrium (SPE)). A strategy

profile 𝜎∗ = (𝜎∗
1
, . . . , 𝜎∗𝑛), with 𝜎∗𝑖 = (𝑥∗

𝑖
, 𝑡∗
𝑖
), is said to be a sub-

game perfect equilibrium if for every Agent 𝑖 , it maximizes the

payoff 𝜋𝑖 (𝜎∗𝑖 , 𝜎
∗
−𝑖 |𝐻 𝑡∗

𝑖
;𝜃𝑖 ) i.e. ∀𝑖 ∈ 𝑁 ,

𝜋𝑖 (𝜎∗𝑖 , 𝜎
∗
−𝑖 |𝐻 𝑡∗

𝑖
;𝜃𝑖 ) ≥ 𝜋𝑖 (𝜎𝑖 , 𝜎∗−𝑖 |𝐻 𝑡∗

𝑖
;𝜃𝑖 ) ∀𝜎𝑖 ,∀𝐻𝑡 ,∀𝜃𝑖 .

Here, 𝐻𝑡 is the history of the game till time 𝑡 , constituting the

agents’ arrivals and their contributions and 𝜎∗
−𝑖 |𝐻 𝑡∗

𝑖
indicates that

the agents who arrive after 𝑡∗
𝑖
follow the strategy specified by 𝜎∗−𝑖 .

Informally it means that, at every stage of the game, irrespective

of what has happened, it is Nash Equilibrium to follow the SPE

strategy for every agent.

Note that in this work, we focus on deterministic strategies over

randomized strategies. We believe, it is better if game-theoretic

equilibria are achieved by deterministic strategies than randomized

strategies, albeit the latter introduces a richer strategy space. Such

randomized strategies may consist of a joint probability distribu-

tion over the amount and the time of contribution. However, this

requires the agents to perform complex randomization. The agents

will also require assurance over the correctness of the randomiza-

tion, with the prescribed equilibrium. Therefore, we believe that for

such complex games, deterministic strategies are better. We leave

it for future work to further explore other randomized strategies.

3 RELATEDWORK
We focus on the class of mechanisms which require the project to

aggregate a minimum level (Provision Point) of funding before the

SP can claim it. There is an extensive literature on the design for

mechanisms with provision points for CC. Morgan [15] incentivizes

agent contribution for civic projects using state lotteries such that

a higher contribution leads to a higher likelihood of winning. The

game induced attains a unique equilibrium. In [14], agents con-

tribute in a round-robin fashion such that an equilibrium exists

where an agent contributes iff other agents make their equilibrium

contributions. Our work is most closely related to the PPM, PPR

and PPS mechanisms.

3.1 Provision Point Mechanism (PPM)
PPM [7] is the simplest mechanism in this class where agents

contribute voluntarily. Agents gain a positive payoff only when

the project gets provisioned and a payoff of zero otherwise i.e.,

𝑅𝑃𝑃𝑀 (𝜎) = ((0) | ∀𝑖 ∈ 𝑁 ). Then the payoff structure of PPM, for

every Agent 𝑖 , is,

𝜋𝑖 (·) = I𝐶≥𝐻 × (𝜃𝑖 − 𝑥𝑖 )

where, 𝜋𝑖 (·) and 𝑥𝑖 are Agent 𝑖’s payoff and contribution respec-

tively. PPM has been shown to have multiple equilibria and also

does not guarantee strictly positive payoff to the agents. It has led

the mechanism to report under-provisioning of the project, i.e., the

provision point not being reached [13].

3.2 Provision Point MechanismWith Refund
(PPR)

PPM does not guarantee strictly positive payoff for agents. Thus,

as civic goods are non-excludable, the agents do not have an in-

centive to contribute, and may free-ride leading to the project not

being provisioned. PPR [24] improved upon this by offering refund

bonuses to the agents in case the project doesn’t get provisioned

and rewarded payoff like PPM otherwise. The refund bonus scheme

is directly proportional to agent’s contribution and is given as

𝑅𝑃𝑃𝑅
𝑖

(𝜎) =
( 𝑥𝑖
𝐶

)
𝐵 ∀𝑖 ∈ 𝑁 , where 𝐵 > 0 is the total budget. Then

the payoff structure of PPR, for every Agent 𝑖 , can be expressed as,

𝜋𝑖 (·) = I𝐶≥𝐻 × (𝜃𝑖 − 𝑥𝑖 ) + I𝐶<𝐻 × 𝑅𝑃𝑃𝑅𝑖 (𝜎) .

In PPR, an agent has no knowledge of other agents’ contribution.

Thus, as shown in [10], PPR collapses to a one-shot simultaneous

game where every agent delays its contribution till the deadline.

This results in each agent attempting to contribute at the deadline,

leading to a race condition, defined as follows.

Definition 3.1 (Race Condition). A strategy profile𝜎∗ = (𝜎∗
1
, . . . , 𝜎∗𝑛)

is said to have a race condition if ∃𝑆 ⊆ 𝑁 with |𝑆 | > 1, for which

∀𝑖 ∈ 𝑆 the strategy 𝜎∗
𝑖
= (𝑥∗

𝑖
, 𝑡), with 𝑥∗

𝑖
as the equilibrium contri-

bution, is the PSNE of the induced game i.e., ∀𝜎𝑖 ,∀𝑖 ∈ 𝑆 ,

𝜋𝑖 (𝜎∗𝑖 , 𝜎
∗
−𝑖 ;𝜃𝑖 ) ≥ 𝜋𝑖 (𝜎𝑖 , 𝜎∗−𝑖 ;𝜃𝑖 )

where 𝑡 ∈ [𝑦,𝑇 ] s.t. 𝑦 = max

𝑗 ∈𝑆
𝑦 𝑗 .

Here, 𝜎𝑖 = (𝑥∗
𝑖
, 𝑡𝑖 ) ∀𝑡𝑖 ∈ [𝑦𝑖 ,𝑇 ].

For PPR, 𝑆 = 𝑁 and 𝑡 = 𝑇 , i.e., the strategy 𝜎∗
𝑖
= (𝑥∗

𝑖
,𝑇 ) ∀𝑖 ∈ 𝑁

constitutes a set of PSNE of PPR in a sequential setting. This is

because the refund bonuses here are independent of time of con-

tribution. Thus, agents have no incentive to contribute early. Such

strategies lead to the project not getting provisioned in practice

and are therefore undesirable.
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3.3 Provision Point MechanismWith Securities
(PPS)

PPS [10] addresses the shortcomings of PPR by offering early con-

tributors higher refund than a late contributor for the same amount.

The refund bonus of a contributor is determined using securities

from a cost based complex prediction market [4] and is given as

𝑅𝑃𝑃𝑆
𝑖

(𝜎) = (𝑟𝑡𝑖
𝑖
− 𝑥𝑖 ) ∀𝑖 ∈ 𝑁 where, 𝑡𝑖 and 𝑟

𝑡𝑖
𝑖
are Agent 𝑖’s time of

contribution and the number of securities allocated to it, respec-

tively. 𝑟
𝑡𝑖
𝑖
depends on the contribution 𝑥𝑖 and the total number of

securities issued in the market at the time contribution 𝑡𝑖 denoted

by 𝑞𝑡𝑖 . Then the payoff structure of PPS, for every Agent 𝑖 , can be

expressed as,

𝜋𝑖 (·) = I𝐶≥𝐻 × (𝜃𝑖 − 𝑥𝑖 ) + I𝐶<𝐻 × 𝑅𝑃𝑃𝑆𝑖 (𝜎)

To set up a complex prediction market in the context of CC, PPS

requires a cost function (𝐶0) satisfying [10, CONDITIONS 1-4,6-7].

This cost function can either be based on the logarithmic scoring
rule [10, Eq. 3] or the quadratic scoring rule [10, Eq. 4].

PPS awards every contributing agent securities for the project

not getting provisioned. These securities are dependent on the

agent contribution i.e., the greater the contribution, the higher

the number of securities are allocated to the agent. Each of these

securities pay out a unit amount if the project is not provisioned.

However, setting up such a market and computing securities to be

allotted is computationally expensive and costly to implement as a

smart contract. Hence, we want to look for more desirable refund

bonus schemes.

4 DESIRABLE PROPERTIES OF REFUND
BONUS SCHEMES

Motivated by the theoretical guarantees of PPR and PPS, in this

paper we look for provision point mechanism with refund bonus

schemes. We first identify the desirable properties for such schemes.

A desirable refund bonus scheme should not just restrict the set

of strategies in a way that the project is provisioned at equilibrium,

but should also incentivize greater as well as early contributions,

so as to avoid the race condition, from all interested agents. A

refund bonus scheme without these, would fail in a sequential (web-

based) setting, similar to PPR, and hence these are essential for a

provision point mechanism’s implementation online. We formalize

these desirable properties as the following two conditions for a
refund bonus scheme 𝑅(𝜎) where 𝜎 = ((𝑥𝑖 , 𝑡𝑖 ) | ∀𝑖 ∈ 𝑁 ) such that

𝑥𝑖 ∈ (0, 𝐻 ], 𝑡𝑖 ∈ [𝑦𝑖 ,𝑇 ] ∀𝑖 ∈ 𝑁 and with budget 𝐵.

Condition 1 (Contribution Monotonicity). The refund must
always increase with the increase in contribution so as to incentivize
greater contribution i.e., ∀𝑖 ∈ 𝑁, 𝑅𝑖 (𝜎) ↑ as 𝑥𝑖 ↑. Further, if 𝑅𝑖 (·) is
a differential in 𝑥𝑖 ∀𝑖 , then,

𝜕𝑅𝑖 (𝜎)
𝜕𝑥𝑖

> 0 ∀𝑡𝑖 . (2)

Condition 2 (Time Monotonicity). The refund must always
decrease with the increase in the duration of the project so as to
incentivize early contribution i.e., 𝑅(𝜎) must be a monotonically

decreasing function with respect to time 𝑡𝑖 ∈ (0,𝑇 ),∀𝑥𝑖 , ∀𝑖 ∈ 𝑁 or

𝑅𝑖 (𝜎) ↓ as 𝑡𝑖 ↑ and ∃ 𝑡𝑖 < 𝑇, and Δ𝑡𝑖 s.t.,
𝑅𝑖 ((𝑥𝑖 , 𝑡𝑖 + Δ𝑡𝑖 ), 𝜎−𝑖 ) − 𝑅𝑖 ((𝑥𝑖 , 𝑡𝑖 ), 𝜎−𝑖 )

Δ𝑡𝑖
< 0

(3)

Note that, with Condition 2 we impose that there does not exist

any time 𝑡 ∈ [0,𝑇 ] such that there is race among the agents to

contribute at 𝑡 . We now analyze the consequence of such a refund

bonus scheme on the characteristics of the game induced by it.

4.1 Sufficiency of the Refund Bonus Scheme
In this subsection, we show that a refund bonus scheme satisfying

Conditions 1 and 2, is sufficient to implement civic crowdfunding

projects in sequential settings. For this, let 𝐺 be the game induced

by the refund bonus scheme 𝑅(·), for the payoff structure as given

by Eq. 1. We require 𝐺 to satisfy the following properties.

Property 1. In 𝐺 , at equilibrium, the total contribution equals
the provision point i.e., 𝐶 = 𝐻 .

Property 2. 𝐺 must avoid the race condition.

Property 3. 𝐺 is a sequential game.

With these properties, we present the following theorem.

Theorem 4.1. Let𝐺 be the game induced by a refund bonus scheme
𝑅(·) for the payoff structure as given by Eq. 1, and with 𝜗 > 𝐻, 𝐵 > 0.
If 𝑅(·) satisfies Conditions 1 and 2, Properties 1, 2 and 3 hold.

Proof: In Steps 1, 2 and 3, we show that 𝑅(·) satisfying Condition

1 is sufficient to satisfy Property 1 and Condition 2 is sufficient to

satisfy Properties 2 and 3.

• Step 1: As 𝜗 > 𝐻 , from Eq. 1, at equilibrium 𝐶 < 𝐻 cannot hold,

as ∃𝑖 ∈ 𝑁 with 𝑥𝑖 < 𝜃𝑖 , at least. Such an Agent 𝑖 could obtain a

higher refund bonus by marginally increasing its contribution since

𝑅(·) satisfies Condition 1 and 𝐵 > 0. For 𝐶 > 𝐻 , any agent with a

positive contribution could gain in payoff by marginally decreasing

its contribution. Thus, at equilibrium𝐶 = 𝐻 or𝐺 satisfies Property

1.

• Step 2: Every Agent 𝑖 contributes as soon as it arrives, since 𝑅(·)
satisfies Condition 2 i.e., ∀𝑖 ∈ 𝑁 ,

𝜋𝑖 ((𝑥𝑖 , 𝑦𝑖 ), 𝜎−𝑖 ) > 𝜋𝑖 ((𝑥𝑖 , 𝑡), 𝜎−𝑖 ) ∀𝑡 ∈ (𝑦𝑖 ,𝑇 ] .
In other words, the best response∀𝑖 ∈ 𝑁 is the strategy 𝜎𝑖 = (𝑥𝑖 , 𝑦𝑖 ).
Thus, as per Definition 3.1,𝐺 avoids the race condition or𝐺 satisfies

Property 2.

• Step 3: Since 𝐺 satisfies Property 2, it avoids the race condition.

Hence, it can be implemented in a sequential setting or 𝐺 is a

sequential game. □

Necessity. Theorem 4.1 shows that Condition 1 is sufficient to

satisfy Property 1 and Condition 2 is sufficient to satisfy Properties

2 and 3. We believe that these conditions are not necessary and

provide an argument for the same in the complete version of the

paper [12]. However, a formal proof remains elusive.

Theorem 4.1 shows that a refund bonus scheme satisfying Con-

ditions 1 and 2 avoids the race condition (Property 2) and induces a
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Mechanism Refund Scheme Parameters Covergence of Sum Based On

PPRG 𝑅𝑃𝑃𝑅𝐺
𝑖

(·) =
(
𝑥𝑖+𝑎×(1/𝛾 )𝑖−1

𝐶+𝐾1

)
𝐵 𝑎 > 0, 1/𝛾 < 1, 𝐾1 =

𝑎𝛾
𝛾−1

∑∞
𝑖=1

(
𝑥𝑖 + 𝑎(1/𝛾)𝑖−1

)
= 𝐶 + 𝐾1 Geometric Progression (GP)

PPRE 𝑅𝑃𝑃𝑅𝐸
𝑖

(·) =
(
𝑥𝑖+𝐾2×𝑒−𝑡𝑖
𝐶+𝐾2

)
𝐵 𝐾2 > 0

∑∞
𝑖=1

(𝑥𝑖 ) +
∫ ∞
𝑡=𝑡1

(𝐾2𝑒
−𝑡𝑑𝑡) ≤ 𝐶 + 𝐾2 Exponential Function (EF)

PPRP 𝑅𝑃𝑃𝑅𝑃
𝑖

(·) =
(
𝑥𝑖+𝐾3× 1

𝑖 (𝑖+1)
𝐶+𝐾3

)
𝐵 𝐾3 > 0

∑∞
𝑖=1

(
𝑥𝑖 + 𝐾3

1

𝑖 (𝑖+1)

)
= 𝐶 + 𝐾3 Polynomial Function (PF)

Table 1: Various Refund schemes satisfying Condition 1 and Condition 2 for an Agent 𝑖. Note that, in 𝑅𝑃𝑃𝑅𝐺 and 𝑅𝑃𝑃𝑅𝑃 , the
subscript 𝑖 denotes the order of the contribution.

sequential game (Property 3). Thus, a mechanism deploying such a

refund bonus scheme can be implemented sequentially, i.e., over web-
based (or online) platforms. Additionally, refund bonus schemes

should also be clear to explain to a layperson. Moreover, these

should be computationally efficient and cost-effective when de-

ployed as a smart contract. Through this generalized result on

refund bonus schemes, we show the following proposition.

Proposition 4.2. PPS satisfies Condition 1 and Condition 2.

Proof: Since every cost function used in PPS for crowdfunding

must satisfy

𝜕 (𝑟𝑡𝑖
𝑖
−𝑥𝑖 )

𝜕𝑥𝑖
> 0, ∀𝑖 [10, CONDITION-7], PPS satisfies

Condition 1.

For Condition 2, observe that ∀𝑖 , from [10, Eq. 6]

(𝑟𝑡𝑖
𝑖
− 𝑥𝑖 ) = 𝐶−1

0
(𝑥𝑖 +𝐶0 (𝑞𝑡𝑖 )) − 𝑞𝑡𝑖 − 𝑥𝑖 . (4)

In Eq. 4, as 𝑡𝑖 ↑, 𝑞𝑡𝑖 ↑ as it is a monotonically non-decreasing

function of 𝑡 and thus R.H.S. of Eq. 4 decreases since R.H.S. of Eq. 4

is a monotonically decreasing function of 𝑞𝑡𝑖 [10, Theorem 3 (Step

2)]. Thus, PPS also satisfies Condition 2. □

Corollary 4.3. PPS avoids the race condition and thus can be
implemented sequentially.

Proof: The authors prove in [10, Theorem 3] that PPS can be im-

plemented sequentially without using Condition 1 and 2. However,

from Proposition 4.2, and the fact that PPS payoff structure follows

Eq. 1, we see from Theorem 4.1 that PPS can be implemented in a

sequential setting. □
In the next subsection, we present three novel refund schemes

satisfying Conditions 1 and 2 and the novel provision point mecha-

nisms based on them.

4.2 Refund Bonus Schemes
Table 1 presents three novel refund schemes for an Agent 𝑖 con-

tributing 𝑥𝑖 at time 𝑡𝑖 as well as the mechanisms which deploy

them. Note that, we require all the refund bonus schemes to con-

verge to a particular sum that can be pre-computed. This conver-

gence allows these schemes to be budget balanced. The parameters

𝑎,𝛾, 𝐾1, 𝐾2, 𝐾3 and 𝐵 are mechanism parameters (for their respec-

tive mechanisms) which the SP is required to announce at the start.

The refund schemes presented deploy three mathematical func-

tions: geometrical, exponential and polynomial decay. 𝑅𝑃𝑃𝑅𝐺 (·)
and 𝑅𝑃𝑃𝑅𝑃 (·) refunds the contributing agents based on the se-

quence of their arrivals (similar to PPS), while the refund scheme

𝑅𝑃𝑃𝑅𝐸 (·) refunds them on the basis of their time of contribution.

This allows us to compare the evolution in the refund share, in com-

parison to PPR and PPS, with respect to the increase in time, for an

Agent 𝑖 . The evolution in the refund share of PPRG, PPRE and PPRP,

in comparison to PPR and PPS, with respect to the increase in time,

for an Agent 𝑖 is depicted in Figure 1. To compare the refund shares

of different schemes we keep Agent 𝑖’s contribution 𝑥𝑖 , the budget

𝐵 and the provision point 𝐻 same for all, with 𝐾1 = 𝐾2 = 𝐾3.

The horizontal axis in Figure 1 represents the time at which

Agent 𝑖 contributes. For PPRG and PPRP, this is equivalent to the

sequence in which the agents contribute, i.e., the axis represents 𝑡𝑖 ,

as formally defined later in Claim 2. For PPRE, the horizontal axis

is the epoch of time at which Agent 𝑖 contributes, i.e., 𝑡𝑖 . For PPS,

the horizontal axis is also the sequence of agents contributing, just

like in PPRG and PPRP. Each Agent 𝑡 𝑗 ( 𝑗 < 𝑖) is issued a constant

number of securities, i.e., the number of outstanding securities in

the market increases by a constant number as the number of agents

contributing increases.

As evident in Figure 1, the refund scheme of PPRG decreases

gradually when compared to refund schemes of PPRE and PPRP.

Thus, PPRG can provide significantly greater refund share for more

number of agents, for the same bonus budget. In Section 6, we study

the impact of such a refund share distribution by simulating the

three mechanisms in a Reinforcement Learning environment.

4.2.1 Sufficiency Conditions. We now show that PPRG satisfies

Conditions 1 and 2.

Claim 1. 𝑅𝑃𝑃𝑅𝐺 (𝜎) satisfies Condition 1 ∀𝑖 ∈ 𝑁 .

Proof: Observe that ∀𝑖 ∈ 𝑁 ,

𝜕𝑅𝑃𝑃𝑅𝐺
𝑖

(𝜎)
𝜕𝑥𝑖

=
𝐵

𝐶 + 𝐾1

> 0 ∀𝑡𝑖 .

Therefore, 𝑅𝑃𝑃𝑅𝐺 (·) satisfies Condition 1 ∀𝑖 . □

Claim 2. 𝑅𝑃𝑃𝑅𝐺 (𝜎) satisfies Condition 2.

Proof: For every Agent 𝑖 ∈ 𝑁 arriving at time 𝑦𝑖 , its share of

the refund bonus given by 𝑅𝑃𝑃𝑅𝐺 (·) will only decrease from that

point in time, since its position in the sequence of contributing

agents can only go down, making it liable for a lesser share of the

bonus, for the same contribution. Let 𝑡𝑖 be the position of the agent

arriving at time 𝑦𝑖 , when it contributes at time 𝑡𝑖 . While 𝑡𝑖 will take

discrete values corresponding to the position of the agents, for the

purpose of differentiation, let 𝑡𝑖 ∈ R. Now, we can argue that at

every epoch of time 𝑡𝑖 , Agent 𝑡𝑖 will contribute to the project. With
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Figure 1: Evolution of the refund share for an Agent 𝑖 for different provision point mechanisms.

this, 𝑅𝑃𝑃𝑅𝐺 (·) can be written as,

𝑅𝑃𝑃𝑅𝐺𝑖 (𝜎) =
(
𝑥𝑖 + 𝑎 × (1/𝛾)𝑡𝑖−1

𝐶 + 𝐾

)
𝐵.

Further observe that ∀𝑖 ∈ 𝑁 ,

𝜕𝑅𝑃𝑃𝑅𝐺
𝑖

(𝜎)
𝜕𝑡𝑖

= −
(
𝑎 × (1/𝛾)𝑡𝑖
𝐶 + 𝐾1

)
𝐵 < 0 ∀𝑥𝑖 .

Therefore, 𝑅𝑃𝑃𝑅𝐺 (·) satisfies Condition 2. □
Similarly, it can be shown that 𝑅𝑃𝑃𝑅𝐸 and 𝑅𝑃𝑃𝑅𝑃 also satisfy

Conditions 1 and 2. The formal proofs are presented in [12]. In the

next subsection, we compare the efficiency of the refund schemes

presented, in terms of their gas consumption when deployed as a

smart contract over Ethereum.

4.3 Gas Comparisons
Every smart contract is compiled to a bytecode and is then exe-

cuted on EVM (Ethereum Virtual Machine). EVM is sandboxed and

completely isolated from the rest of the network and thus, every

node runs each instruction independently on EVM. For executing

every instruction, there is a specified cost, expressed in the number

of gas units. Gas is the name for the execution fee that senders of

transactions need to pay for every operation made on an Ethereum

blockchain. Gas and ether are decoupled deliberately since units of

gas align with computation units having a natural cost, while the

price of ether fluctuates as a result of market forces. The Ethereum

protocol charges a fee per computational step that is executed in a

contract or transaction to prevent deliberate attacks and abuse on

the Ethereum network [1].

We present a hypothetical cost comparison between PPS, PPRG,

PPRE and PPRP based on the Gas usage statistics given in [9, 23].

Towards it, the cost in Gas units is as follows for the relevant

operations: ADD: 3, SUB: 3, MUL: 5, DIV: 5, EXP(𝑥): 10 + 10 ∗
𝑙𝑜𝑔(𝑥) and LOG(𝑥 ): 365 + 8 ∗ size of 𝑥 in bytes. Table 2 presents the

comparison.

Note that, we need not require any exponential calculations in

PPRG. Towards this, the SP can have a variable (say 𝑣𝑎𝑙 ) to store the

previous GP term. For instance, when the first agent contributes

it is allocated 𝑎 × (1/𝛾)0
. Post this, 𝑣𝑎𝑙 = 𝑎 × (1/𝛾)0

. The second

agent to contribute is then allocated 𝑎 × (1/𝛾)1
or 𝑣𝑎𝑙 × (1/𝛾) after

which 𝑣𝑎𝑙 is updated with this value. Thus, in PPRG, we can replace

an exponential operation with multiplication operation which is

significantly less expensive.

For every agent, PPRG takes 21 gas units, PPRP takes 31 gas

units, PPRE takes at least 31 gas units and PPS takes at least 407 gas

units. When implemented on smart contract, PPS is an expensive

mechanism because of its logarithmic scoring rule for calculating

payment rewards. PPRG, PPRP, and PPRE, on the other hand, use

simpler operations and therefore have minimal operational cost.

PPRG’s cost efficiency when deployed as a smart contract, along

with the fact that it allocates significant refund shares for a greater

number of agents when compared to PPRE and PPRP, makes it more

desirable out of the three introduced. Hence, in the next section,

we formally describe PPRG and analyze it.

5 PPRG
In this section, we describe the mechanism Provision Point mecha-
nism with Refund through Geometric Progression (PPRG), for crowd-

funding a civic project. PPRG incentivizes an interested agent to

contribute as soon as it arrives at the crowdfunding platform. In

PPRG, for the same contribution of Agent 𝑖 and Agent 𝑗 , i.e., 𝑥𝑖 = 𝑥 𝑗 ,

the one who contributed earlier obtains a higher share of the refund

bonus. These difference in shares is allocated using the terms of an
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Operation

PPS PPRG PPRE PPRP

Operations Gas Consumed Operations Gas Consumed Operations Gas Consumed Operations Gas Consumed

ADD 2 6 2 6 2 6 2 6

SUB 2 6 0 0 0 0 0 0

MUL 2 10 2 10 2 10 3 15

DIV 2 10 1 5 1 5 2 10

EXP(𝑥 ) 2 10 + 10 × (𝑙𝑜𝑔(𝑥)) 0 0 1 10 + 10 × (𝑙𝑜𝑔(𝑥)) 0 0

LOG(𝑥 ) 2 365 + 8 × (bytes logged) 0 0 0 0 0 0

Total Gas: 407 (at least) Total Gas: 21 Total Gas: 31 (at least) Total Gas: 31

Table 2: Gas Consumption comparison between PPS, PPRG, PPRE and PPRP for an agent. All values are in Gas units.

infinite geometric progression series (GP) with common ratio < 1.

We now formally describe the refund bonus scheme in detail.

Refund Bonus Scheme. The sum of an infinite GP with 𝑎 > 0 as

the first term and 0 < 1/𝛾 < 1 as the common ratio, is,

𝐾1 = 𝑎 ×
inf∑
𝑖=0

(1/𝛾)𝑖 = 𝑎𝛾

𝛾 − 1

.

With this, we propose a novel refund bonus scheme,

𝑅𝑃𝑃𝑅𝐺𝑖 (𝜎) = 𝑝𝑖 =
(
𝑥𝑖 + 𝑎 × (1/𝛾)𝑖−1

𝐶 + 𝐾1

)
𝐵 (5)

for every Agent 𝑖 ∈ 𝑁 , 𝐵 as the total bonus budget allocated for

the project by the SP and where 𝜎 = ((𝑥𝑖 , 𝑡𝑖 ) | ∀𝑖 ∈ 𝑁 ). The values
𝑎 and 𝛾 are mechanism parameters which the SP is required to

announce at the start of the project.

5.1 Equilibrium Analysis of PPRG
The following theorem provides the equilibrium analysis of PPRG,

Theorem 5.1. For PPRG, with the refund 𝑝𝑖 as described by Eq.
5 ∀𝑖 ∈ 𝑁 , satisfying 0 < 𝐵 ≤ 𝜗 − 𝐻 and with the payoff structure

as given by Eq. 1, a set of strategies
{ (
𝜎∗
𝑖
= (𝑥∗

𝑖
, 𝑦𝑖 )

)
: 𝑖 𝑓 ℎ𝑦𝑖 =

0 𝑡ℎ𝑒𝑛 𝑥∗
𝑖
= 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑥∗

𝑖
≤ 𝜃𝑖 (𝐻+𝐾1)−𝑎𝐵×(1/𝛾 )𝑖−1

𝐻+𝐾1+𝐵

}
∀𝑖 ∈ 𝑁 are

sub-game perfect equilibria, such that at equilibrium 𝐶 = 𝐻 . In this,
𝑥∗
𝑖
is the contribution towards the project, 𝑦𝑖 is the arrival time to the

project of Agent 𝑖 , respectively.

Step 1: Since 𝑅𝑃𝑃𝑅𝐺 (·) satisfies Condition 1 (Claim 1) and Condition

2 (Claim 2) and has a payoff structure as given by Eq. 1, from

Theorem 1 we get the result that PPRG induces a sequential move

game and thus, can be implemented in a sequential setting.

Step 2: FromClaim 2, the best response for any agent is to contribute

as soon as he arrives i.e., at time 𝑦𝑖 .

Step 3: We assume that each agent is symmetric in its belief with

respect to the provision of the project. Moreover, from Theorem

4.1, agents know that the project will be provisioned at equilibrium.

Therefore, for any agent, its equilibrium contribution becomes that

𝑥∗
𝑖
for which its provisioned payoff is greater than or equal to its

not provisioned payoff. Now, with 𝐶 = 𝐻 at equilibrium,

𝜃𝑖 − 𝑥∗𝑖 ≥ 𝑝𝑖 =

(
𝑥∗
𝑖
+ 𝑎 × (1/𝛾)𝑖−1

𝐶 + 𝐾1

)
𝐵

⇒ 𝑥∗𝑖 ≤ 𝜃𝑖 (𝐻 + 𝐾1) − 𝑎𝐵 × (1/𝛾)𝑖−1

𝐻 + 𝐾1 + 𝐵

Step 4: Summing over 𝑥∗
𝑖
≤ 𝜃𝑖 (𝐻+𝐾1)−𝑎𝐵×(1/𝛾 )𝑖−1

𝐻+𝐾1+𝐵 , ∀𝑖 we get,

𝐵 ≤ (𝐻 + 𝐾1)𝜗 − 𝐻2 − 𝐻𝐾1

𝐻 + 𝐾1

.

as

∑
𝑖∈𝑁 𝑥

∗
𝑖
= 𝐻 . From the above equation, we get

0 < 𝐵 ≤ (𝐻 + 𝐾1)𝜗 − 𝐻2 − 𝐻𝐾1

𝐻 + 𝐾1

=⇒ 0 < 𝐵 ≤ 𝜗 − 𝐻,

as a sufficient condition for existence of Nash Equilibrium for PPRG.

Step 5: We now show that the strategies as defined in Theorem 5.1

are sub-game perfect through the following scenarios.

• For an Agent 𝑖 entering the project such that ℎ𝑦𝑖 = 0 (i.e.,𝐶 = 𝐻 ),

its best response is contributing 0.

• For an Agent 𝑖 entering the project such that ℎ𝑦𝑖 > 0 with 𝑥∗
𝑖
>

ℎ𝑦𝑖 , its best response is contributing ℎ𝑦𝑖 . Observe that, Agent 𝑖

will contribute the maximum contribution required, ℎ𝑦𝑖 , since

its not provisioned payoff increases as its contribution increases

(Claim 1). Therefore, for a contribution less than ℎ𝑦𝑖 , Agent 𝑖 will

receive lesser payoff in comparison for the contribution ℎ𝑦𝑖 .

• Lastly, for an Agent 𝑖 entering the project such that ℎ𝑦𝑖 > 0 with

𝑥∗
𝑖
≤ ℎ𝑦𝑖 , its best response is contributing 𝑥∗

𝑖
(as defined in The-

orem 5.1). This is because for the contribution 𝑥∗
𝑖
, its provisioned

payoff is equal to its not provisioned payoff. For this scenario,

with backward induction, it is the best response for every Agent

𝑖 to follow the same strategy in which their provisioned payoffs

are equal to their not provisioned payoffs, irrespective of ℎ𝑦𝑖 . □

Note.
• Observe that, as the refund bonus decreases with time (Claim

2), each agent in PPRG is better off contributing once instead

of breaking up its contribution. This follows as we assume that

each agent’s belief for the project’s provision is symmetric and

does not vary throughout the mechanism.

• In Theorem 5.1, we identify a set of pure-SPE at which the project

is provisioned. However, we do not claim that these are the only

set of pure-SPE possible. We leave it for future work to explore

other possible pure-SPE at which the project gets provisioned.

The equilibrium analysis of PPRE and PPRP follows similar to

Theorem 5.1 and is presented in [12].

6 SIMULATION ANALYSIS
In Section 4.3 we analyzed PPRG, PPRE, and PPRP in a hypothetical

cost comparison with respect to PPS if they were implemented as
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(a)

(b)

(c)

Figure 2: Comparison of provision accuracy of PPRG, PPRE
and PPRP with PPS for (a) 𝐸 [𝜗] = 5 ∗𝐻 (b) 𝐸 [𝜗] = 10 ∗𝐻 ; and
(c) 𝐸 [𝜗] = 20 ∗ 𝐻 .

smart contracts. In this section, we compare PPRG, PPRE, PPRP, and

PPS for provision accuracy using a civic crowdfunding proprietary

simulator built in partnership with KoineArth [2].

However, it is very challenging to test civic crowdfunding mech-

anisms in a real-world environment because of the irreversible

nature of the civic properties and decisions made in the process.

Therefore, we employ Reinforcement Learning (RL) based simu-

lations to test and compare the applicability and performance of

the mechanisms. RL is an area of machine learning where agents

interact with an environment and learn through a trial and error

process where each action is rewarded or penalized based on its

consequences on the game.

In this simulator, we create a Reinforcement Learning environ-

ment for PPRG, PPRE, PPRP, and PPS where agents learn to partic-

ipate in the mechanisms. Agents go through repetitive iterations

and learn their best strategy through rewards distributed by the

corresponding mechanism. We run the simulation of 25 agents

for all the mechanisms and obtain comparison results between

PPRG, PPRE, PPRP with respect to PPS. In order to measure the

performance of these mechanisms, we define the quantity provision
accuracy. For a mechanismM, the provision accuracy is defined as

the fraction of the civic projects provisioned byM over the total

number of projects simulated. The results of the simulation are

shown in Figure 2.

Among PPRG, PPRE, and PPRP, it is clear to see that PPRG shows

better provision accuracy. In case when the total expected valuation
(𝐸 (𝜗)) is low (5 times the provision point), PPRP shows slightly

better accuracy. However, the gain in the accuracy only comes at

the expense of a budget very close to the maximum possible budget,

i.e., 𝐵 = 𝐸 (𝜗) − 𝐻 . Such a budget is difficult to get in realistic

circumstances. Note that, the equilibrium contributions are such

that the provisioned payoff equals the not provisioned payoff (as

defined in Theorem 5.1). Therefore, the difference in the accuracy

can be attributed to the greater refund share provided by PPRG, for

the same budget. This increases the not provisioned payoff for the

agents, thereby incentivizing them to increase their contributions.

Thus, we conclude that PPRG performs better than PPRE and PPRP.

When compared to PPS, PPRG shows significantly good pro-

vision accuracy when 𝐸 (𝜗) is high (10 times provision point, for

instance). When PPS shows a slightly higher accuracy, it again

comes at the expense of a budget close to the maximum possible

budget, 𝐵. For a reasonable budget of approximately 0.5 × 𝐵 or

less, both the mechanisms share similar accuracy. Thus, PPS and

PPRG perform equally in terms of provision accuracy, for a rational

budget.

7 CONCLUSION
Motivated by the theoretical guarantees of PPR [24] and PPS [10],

we looked for provision point mechanisms for CC with refund

bonus schemes. We introduced two conditions, namely Contri-

bution Monotonicity and Time Monotonicity, for refund bonus

schemes in provision point mechanisms. We proved that these two

conditions are sufficient to implement provision point mechanisms

with refund bonus to possess an equilibrium that avoids free-riding

and race condition (Theorem 4.1). With this, we proposed three

simple refund bonus schemes based on geometric progression, expo-

nential and polynomial functions. With these schemes, we designed

novel mechanisms, namely, PPRG, PPRE and PPRP. We showed

that PPRG has much less cost when implemented as a smart con-

tract over Ethereum framework. We identified a set of sub-game

perfect equlibria for PPRG in which the project is provisioned at

equilibrium (Theorem 5.1). To measure the performance of these

mechanisms, we introduced a notion of provision accuracy. Our

simulations showed that, whenever there is a hefty valuation for

the project under consideration, with small refund bonus budgets,

PPRG achieves the same provision accuracy as PPS. We leave it for

future work to explore other refund bonus schemes having simplic-

ity and efficiency as PPRG and much higher provision accuracies

when the aggregate of the agents’ valuations is just over target

value.
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