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ABSTRACT
Complex machine learning models are regularly used in critical

decision-making domains, as black-box algorithms. This has given

rise to several calls for algorithmic explainability. Many explanation

algorithms proposed in literature assign importance to each feature

individually. However, such explanations fail to capture the joint

effects of sets of features. Indeed, few works so far formally analyze

high dimensional model explanations. In this paper, we propose a

novel high dimension model explanation method that captures the

joint effect of feature subsets.

We propose a new axiomatization for a generalization of the Banzhaf

Index; our method can also be thought of as an approximation of

a black-box model by a higher-order polynomial. In other words,

this work justifies the use of the generalized Banzhaf index as a

model explanation by showing that it uniquely satisfies a set of

natural desiderata and that it is the optimal local approximation of

a black-box model.

1 INTRODUCTION
Machine learning models are currently applied in a variety of high-

stakes domains, such as healthcare, insurance, credit decisions and

more. These domains require high prediction accuracy over high-

dimensional data, and thus require the adoption of increasingly

complex models. The ability to correctly interpret a prediction of

the model’s output is extremely important; however, due to the

complex structure of such algorithms, they lack interpretability and

transparency. The problem of ML interpretability has received a lot

of attention in the machine learning community, and a wide range

of explanation mechanisms have been proposed in the past few

years. Broadly speaking, model explanations are based on a labeled

dataset as well as other potential inputs. Most model explanation

techniques focus on attribute-based explanations: for each feature

i , the model explanation outputs a value ϕi which signifies the

importance of the i-th feature in determining model predictions.

The value ϕi can be thought of as a score — ‘Alice’s high income

is highly indicative of her receiving a loan’ — or a counterfactual

— ‘had Alice’s income been lower by $10,000/year her loan would

have been rejected’. Either way, the basic premise of attribute-based

model explanations is to explain complex model decisions via a

list of n numerical values, where n is the number of data features.

Crucially, this approach fails to capture feature interactions. Features
are often strongly intertwined, especially in complex ML models.

For example: consider a black-box model that predicts sentiments

associated with a paragraph of text. In such texts; there can be a

high negative interaction effect between “not” and “bad”, which
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attribute-based model explanations will fail to capture: assigning

influence to “bad” and “not” individually can be misleading.

In this paper, we propose an axiomatic of a high dimensional model

explanation method, which captures how feature interactions in-

fluence model decision-making. Our feature interaction measure

explores the idea of interaction among players in a cooperative

game. Power indices, for example the Shapley value [22], of coop-

erative games have been used extensively as feature-based model

explanations [7, 9, 18]. However, the axioms characterizing power

indices and interaction indices known from cooperative game the-

ory might not be intuitive for explaining black-box decisions. We

propose a minimal set of more natural axioms that are uniquely

satisfied by an explanation method that coincides with the Banzhaf
interaction index (BII) [12].

1.1 Our Contribution
In this work, we propose a method for high-dimensional expla-

nations for black-box models. Our main goal is to axiomatically

capture higher-order feature interaction. Our main contribution

is twofold: first, we extend the idea of feature-based model expla-

nations, which can be thought of as a local linear approximations

of black-box models, to higher-order polynomial approximations.

Especially, we show that our proposed measure can be obtained by

approximating the black-box model by a higher-order polynomial

(Section 4).

Second, we obtain a new axiomatization of the Banzhaf interaction
index which uniquely satisfies symmetry, limit condition, general-

2-efficiency, and a newly proposed axiom (in the context of Banzhaf

indices): monotonicity.

Monotonicity is a rather general property which essentially means

that the model explanation should change in a manner faithful

to the underlying data. This is very fundamental property for an

interaction measure: which states that the net contribution of the

subset of features for the machine learning model f is more than

that for the model д; then the interaction measure for those features

for model f should be more than the interaction measure for those

features for model д. Our proposed notion of monotonicity is the

extension of the strong monotonicity proposed for a solution of

cooperative games to higher-order coalitions. In fact, our notion

coincides with strong monotonicity for |S | = 1.

1.2 Related Work
Model Explanations: many model explanation methods have

been proposed in recent years. Some techniques provide record-

based explanations [15], or generate explanations from source code

[8], but the bulk of the literature on the topic focuses on feature

based model explanations [2, 4, 7, 9, 24, 26]. Ancona et al. [3] offer

an overview of feature based model explanations for deep neural

networks. The connection to cooperative game theory has been
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widely discussed and exploited in order to generate model expla-

nations [2, 7, 9]. With a special focus on the Shapley value and its

variants [22].

Interaction Index for Cooperative Games: Two widely ac-

cepted measures of marginal influence from cooperative game the-

ory the Shapley value [22] and the Banzhaf value [5], are uniquely

derived from a set of natural axioms. Young [30] proposes mono-

tonic solutions for cooperative games and characterizes the Shapley

value — which uniquely follows strong monotonicity, symmetry,

and efficiency. These measures do not capture player interactions;

rather, they assign weights to individual players. Owen [19] studies

pairwise interaction between players and proposes the first higher-

order solution for a cooperative game. Grabisch and Roubens [12]

extend it to an interaction between any subset of players and build

an axiomatic foundation deriving the Shapley and the Banzhaf in-

teraction indices. In a recent paper, Agarwal et al. [1] propose a new

axiomatization for interaction among players which is inspired by

the Taylor approximation of a Boolean function.

Interaction among features: interaction among features has been

discussed in different communities. In statistics, there exists a vast

classic literature on ANOVA based interaction among features

[10, 11]. Some recent work in the deep learning literature discusses

the interaction among features: Tsang et al. [28] learns interactions

by inspecting the inter-layer weight matrices of a neural network,

Tsang et al. [27] construct a generalized additivemodel that contains

interaction information among features. In another line of work,

Cui et al. [6], Greenside et al. [13] compute the interaction among

features by computing the (expected) Hessian; this can be thought

as an extension of gradient-based influence measures for neural

networks [3]. Datta et al. [9] also propose an influence measure

for a set of featrues called QII. It essentially measures the change

of the output of a model when we randomly change a fixed set of

features. Lundberg et al. [17] propose the Shapley interaction index

as a high-dimensional model explanation specifically for tree-based

models.

2 PRELIMINARIES
Wedenote sets with capital lettersA,B, . . . and use lowercase letters
for functions, scalars, and features. To minimize notation clutter,

we try to omit braces for singletons, pairs and triplets, e.g. we write

f (i), S ∪ i instead of f ({i}), S ∪ {i} and S ∪ ij, S ∪ ijk instead of

S ∪ {i, j}, S ∪ {i, j,k}.
Let N = {1, . . . ,n} be the set of features. A black-box model is a
function mapping a set of n-dimensional input vectors X ⊆ Rn

to R. For example, a model may be given as input the details of

a loan applicant (e.g. their monthly income, loan default history,

etc.), and output a numerical value corresponding to the interest

rate the bank should offer them on their loan application. Our

objective is to generate a model explanation for a given point of
interest (POI) ®x ∈ Rn ; this explanation should (ideally) offer stake-

holders some insight into the underlying decision-making process

that ultimately resulted in the outcome they receive. In this work,

we are interested in measuring the extent to which features, and

their high-order interactions affect model decisions. In order to mea-

sure feature interaction effects, we adopt the baseline comparison
approach [18, 25]; in other words, we assume the existence of a

baseline vector ®x ′, to which we compare an input vector ®x , in order

to generate a model explanation. For example, in the automatic loan

acceptance/rejection domain ®x ′ could correspond to an all-zero vec-

tor (e.g. measuring the effect of an applicant having no money in

their bank account, as opposed to the true amount they have), or a

vector of mean values (e.g. comparing the applicant’s true income

to the average population income).

In order to generate model explanations, we need to formally rea-

son about the effect of changing features in the POI ®x to their

baseline values. Generally speaking, changing a single feature may

have no significant effect on the model prediction. For example,

if f (income = 20k, debt = 90k) = 1, it may well be the case that

changing either the applicant’s low income (20k) or their high debt

(90k) would not result in them receiving the loan, however, it is

unreasonable to claim that neither had an effect on the outcome.

To formally reason about the joint effect of features, we define a

function measuring their value as a set. Given a point of interest ®x ,
we define a set function as

v(S, ®x, ®x ′, f ) = f (®xS , ®x
′
N \S ) − f (®x ′). (1)

In other words, the value we assign to a set of features S is the

extent to which they cause the model prediction to deviate from

the baseline prediction; as a sanity check, we note that

v(∅, ®x, ®x ′, f ) = f (®x ′) − f (®x ′) = 0, and

v(N , ®x, ®x ′, f ) = f (®x) − f (®x ′).

This formulation induces a cooperative game, where features corre-
spond to players. We refer to the game defined in (1) as the feature
effect game. When clear from context, we omit ®x , ®x ′ and f , focusing
solely on the set of features S .
We often replace sets of features with a single feature demarcating

the entire set: given a set T ⊆ N , [T ] denotes a single feature

corresponding to the set. The reduced game w.r.t. the nonempty

T ⊆ N is defined on the features N \T ∪ [T ] with the characteristic

function v[T ](·, f ) : 2
N \T∪{[T ]} → R:

v[T ](S) =

{
v(S ∪T ) [T ] ∈ S

v(S) otherwise

Finally, given a subset S ⊆ N , Sn denotes the n-dimensional vector,

that is 1 for i ∈ S and zero otherwise.

Our objective is to generate high dimensional model explanations,
i.e. functions that assign a value to every subset of features S ⊆ N .

To do so, we define a feature interaction index S ⊆ N for v as Iv (S).
In other words, under the game v — namely the game defined in (1)

— should roughly capture the overall effect that the set of features

S has on the value of v . Going back to the feature effect game

defined in (1), Iv (S) should measure the degree to which switching

the value of features in S back to their baseline values affects the

prediction for ®x .
A key idea in our analysis ismarginal effect: consider a single feature
i ∈ N . Its marginal effect on a setT ⊆ N \ {i} equalsv(T ∪ i)−v(T ),
i.e. how much did the value of v(T ) change as a result of i joining
the coalition T . The marginal effect of i on T is denotedmi (T ). In
particular, recalling that v(S) = f (®xS , ®x

′
N \S ) − f (®x ′), we have

mi (T ,v) = v(T ∪ i) −v(T ) = f (®xT∪i , ®x
′
N \{T∪i }) − f (®xT , ®x

′
N \T ).
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Thus,mi (T ,v) is the marginal effect of knowing the feature i , given
that the values of features in the set T are known. This is similar

to other definitions considered in the literature [9, 18]. When con-

sidering a pair of features i, j ∈ N , how would one define their

marginal effect on a coalition T ⊆ N ? One very natural definition

is to offset the marginal effect of adding both features to T by the

marginal effects of adding i and j separately, i.e.

mi j (T ,v) = (v(T ∪ ij) −v(T ))

− (v(T ∪ i) −v(T ))

− (v(T ∪ j) −v(T ))

=v(T ∪ ij) −v(T ∪ i) −v(T ∪ j) +v(T )

We can define the marginal contribution of a general S ⊆ N , in a

similar manner. LetmS (T ,v) be:

mS (T ,v) =
∑
L⊆S

(−1) |S |− |L |v(T ∪ L).

This is also known as the S discrete derivative of v at T . We note

that when T = ∅, mS (∅,v) is the Harsanyi dividend of S , a well-

known measure of the synergy (or surplus) generated by S [20]. For

T , ∅,mS (T ,v) can be thought of as the added value of having the

coalition S form, given that the players inT have already committed

to joining.

More generally,mS (T ,v) represents the marginal interaction be-

tween features in S within the set of features T ∪ S . Given a set of

features R ⊆ N , we define the primitive game pR as:

pR (S) =

{
1, if R ⊆ S

0, else

The set BN
of all Boolean functions forms a vector space, and

the set of primitive games PN = {pR : R ⊆ N } of all primitive

games is an orthonormal basis of the vector space BN
. Therefore

any Boolean function v (In this context a cooperative game v) is
uniquely represented by a linear combination of primitive games.

In other words, given a cooperative game v : 2
N → R, we can

uniquely write as a linear combination of primitive games:

v(·) =
∑
R⊆N

CRp
R (·) (2)

The unique decomposition of cooperative games will prove useful

in our characterization of high-dimensional model explanations,

presented in Section 3.

3 CHARACTERIZING GOOD MODEL
EXPLANATIONS

As we previously discussed, our objective is to identify high-quality
model explanations. When pursuing quality metrics for a model

explanation, one can take one of two approaches: either show that

the model explanation is the optimal solution to some target (e.g.

minimizes some loss function) [21, 24], or that it satisfies a set of

desirable properties [7, 9, 24]. We take the latter approach in this

work, describing a unique form for the high-dimensional explana-

tion. In what follows, we explore the Banzhaf interaction index (BII)
[12] as a potential method of generating high-dimensional model

explanations. Given a cooperative game v , the Banzhaf Interaction

Index for a subset S ⊆ N is

IvBAN (S) =
1

2
n−|S |

∑
T ⊆N \S

∑
L⊆S

(−1) |S |− |L |v(L ∪T )

=
1

2
n−|S |

∑
T ⊆N \S

mS (T ,v) (3)

In other words, IvBAN (S) equals S ’s expected marginal contribution

to a set T ⊆ N \ S , sampled uniformly at random. As Grabisch

and Roubens [12] show, BII uniquely satisfies Linearity, Symmetry,
Dummy, the Recursive Property, Generalized 2-Efficiency, and the

Limit Condition. In Section 3.1, we propose a ‘leaner’ axiomatization

of BII, which, as we argue, is more sensible in the model explanation

setting. We show that BII is the unique measure which satisfies

four natural axioms: Symmetry, Generalized 2-Efficiency, the Limit
Condition, and Monotonicity. The first three axioms are fairly stan-

dard assumptions in identifying ‘good’ solutions, generalized to

interaction indices by Grabisch and Roubens [12].

Symmetry (S): for any permutationπ overN wehave that Iv (S) =
Iπv (πS). Here, πS equals {π (i) : i ∈ S}, and πv is the game where

the value of a coalition T equals v(π−1T ). Symmetry is a natural

property for any interaction measure: intuitively, it simply stipu-

lates that features’ interaction value is independent of their identity,

and depends only on their intrinsic coalitional worth.

Generalized 2-Efficiency (GE): for any i, j ∈ N , and for any S ⊆

N \ ij:

Iv[i j ] (S ∪ [ij]) = Iv (S ∪ i) + Iv (S ∪ j)

Intuitively, merging two features into one feature encoding the

same information results in no additional influence. Generalized

2-Efficiency extends the 2-Efficiency axiom proposed by Lehrer

[16] to characterize the Banzhaf value.

Limit Condition(L): if N is the set of players of the game v then

Iv (N ) = mN (∅,v) =
∑
L⊆N (−1)n−|L |v(L). In other words, the

interaction value of the set N equals exactly the added value of

it forming, given that no subsets of players have pre-committed

themselves to joining.

Now, we introduce the notion of monotonicity for interaction in-

dices: given cooperative games v1 and v2 and a set of features

S ⊆ N ; the net interaction contribution of features S with the set T
is captured bymS (T ,vi ), for i = 1, 2. IfmS (T ,v1) ≥ mS (T ,v2) for
allT ⊆ N \ S then the interaction value assigned to S should reflect

this. This idea extends the strong monotonicity axiom proposed

by Young [30], which states that if mi (T ,v1) ≥ mi (T ,v2) for all
T ⊆ N \ i then Iv1 (i) ≥ Iv2 (i).
Monotonicity(M): If ∀T ⊆ N \ S , mS (T ,v1) ≥ mS (T ,v2) and
for some T ⊆ N \ S strict inequality holds then Iv1 (S) > Iv2 (S).
Moreover, if ∀T ⊆ N \ S , mS (T ,v1) = mS (T ,v2) then Iv1 (S) =
Iv2 (S).
Datta et al. [9] argue that the monotonicity axiom is better suited for

charactering model explanations than the more ‘standard’ linearity

axiom used in the classic characterization of the Shapley value [22],

as well as the original BII characterization by Grabisch and Roubens

[12].

In Section 3.2 we argue in more detail why these are suitable axioms

for model explanations.
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3.1 Characterizing Monotone
High-Dimensional Model Explanations

The main result of this section is Theorem 3.1.

Theorem 3.1. The only high-dimensional model explanation that
satisfies (S),(GE),(L) and (M) is the Banzhaf Interaction Index.

Iv (S) =
1

2
n−s

∑
T ⊆N \S

∑
L⊆S

(−1) |S |− |L |v(L ∪T ),∀S ⊆ N

Before we prove Theorem 3.1, we require some technical claims

which will be useful for our characterization result.

Proposition 3.1. Given a primitive game pR , for any S ⊆ N : if

S ⊈ R then ∀T ⊆ N \ S ,mS (T ,p
R ) = 0. In particular, Ip

R

BAN (S) = 0.

Proof. Suppose that S ⊈ R. We distinguish between two cases.

Case 1: R ⊈ T ∪ S . In this case, ∀L ⊆ S , T ∪ L does not contain R,

thus pR (T ∪ L) = 0 which impliesmS (T ,p
R ) = 0.

Case 2: R ⊆ T ∪ S . In this case,mS (T ,p
R ) equals∑

L⊆S
(−1) |S |− |L |pR (L ∪T ) =

∑
L⊆S :S∩R⊆L

(−1) |S |− |L | =∑
L⊆S\R

(−1) |S |− |S∩R |− |L | =
∑

L⊆S\R

(−1) |S\R |− |L | =

|S\R |∑
k=0

(−1)k
(
|S \ R |

k

)
=0

Thus in either casemS (T ,p
R ) = 0, and we are done. □

We note that Proposition 3.1 immediately holds for any game that

is a scalar multiple of a primitive game, i.e. for any v = c × pR , and
any S ⊈ R, IvBAN (S) = 0.

Proposition 3.2. If v = c × pR , and S ⊆ R then

IvBAN (S) =
c

2
|R |− |S |

.

Proof. Since S ⊆ R, then for any L ⊂ and anyT ⊆ N \S ,v(L∪T ) =
0. Therefore,

IvBAN (S) =
1

2
n−|S |

∑
T ⊆N \S

∑
L⊆S

(−1) |S |− |L |v(L ∪T )

=
1

2
n−|S |

∑
T ⊆N \S

v(S ∪T ) (4)

Next, ifT ⊆ N \S does not containR\S , thenv(S∪T ) = 0. Therefore,

the summand in (4) equals∑
T ⊆N \R

v(R ∪T ) = c ×
∑

T ⊆N \R

1 = c × 2
n−|R |

Plugging this back into (4), we obtain the desired result. □

Next, we show that the four axioms we propose imply a generalized

version of the dummy property.

Lemma 3.2. If Iv satisfies (S), (GE), (L) and (M) then ifmS (T ,v) = 0

for all T ⊆ N \ S then Iv (S) = 0.

Proof. We begin by showing a weaker claim: if д is a null game
where д(S) = 0 for all S ⊆ N , then Iд(S) = 0 for all S ⊆ N .

For a given null game д, we have mS (T ,д) = 0 for all S ⊆ N
and T ⊆ N \ S . By symmetry, Iд(S1) = Iд(S2) for all S1, S2 ⊆ N
with |S1 | = |S2 |, because for any permutation π , д = πд. Also, by
the Limit Condition(L), Iд(N ) = mN (∅,д) = 0. Similarly, for all

i1 , i2 ∈ N , Iд[i1 ,i2] (N \ i1i2 ∪ [i1, i2]) = 0. In fact, this property

holds for all V ⊂ N : Iд[V ] (N \ V ∪ [V ]) = 0. Now we use (GE)

property for Iд[V ] (N \V ∪ [V ]) by sequentially removing all k ∈ V
until it becomes a singleton. First, for all k1 ∈ V ;

0 = Iд[V ] (N \V ∪ [V ]) = Iд[V \k
1
] (N \V ∪ [V \ k1])+

Iд[V \k
1
] (N \V ∪ k1) = 2Iд[V \k

1
] (N \V ∪ [V \ k1])

The second equality holds because of symmetry (S) property for

the game д[V \k1]. Now for k2 ∈ V \ k1; we similarly use the (GE)

property to obtain Iд[V \k
1
] (N \ V ∪ [V \ k1]) = 2Iд[V \k

1
] (N \ V ∪

[V \ k1k2]). We repeat this argument until only one element is left.

We get 0 = Iд[V ] (N \V ∪ [V ]) = 2
|V |−1Iд(N \V ∪ k). This equality

holds for all V ⊆ N and all k ∈ V . Which shows that for all S ⊆ N ,

Iд(S) = 0.

Now, to prove the second part of the lemma, consider any game

v . If mS (T ,v) = 0 for all T ⊆ N \ S , then mS (T ,v) = mS (T ,д)
for all T ⊆ N \ S , therefore by the Monotonicity property(M),

Iv (S) = Iд(S) = 0, which concludes the proof. □

Next, let us characterize how influence measures satisfying our

axioms behave on primitive games. Note that Lemma 3.3 offers a

special case of Proposition 3.1 for any influence measure, rather

than just for BII.

Lemma 3.3. If Iv satisfies (S), (GE), (L) and (M) then for v = c × pR ,
Iv (R) = c

Proof. We prove this lemma by inductively removing a feature

k ∈ N \R and using the (GE) property at each step. Take any feature

i ∈ R and remove it from R and define S := R \ {i}. Now for any

feature j1 ∈ N \ R , i , by (GE) property we can write,

Iv[i j
1
] (S ∪ [ij1]) = Iv (S ∪ i) + Iv (S ∪ j1)

Since S ∪ j1 ⊈ R, by Proposition 3.1,mS∪j1 (T ,v) = 0 for all T ⊆

N \ {S ∪ j1}. Therefore by Lemma 3.2, Iv (S ∪ j1) = 0, which yields

Iv (R) = Iv[i j
1
] (S ∪[ij1]). We next remove j2 , j1 ∈ N \R, and again

invoke the (GE) property:

Iv[i j
1
j
2
] (S ∪ [ij1j2]) = Iv[i j

1
] (S ∪ [ij1]) + I

v[i j
1
] (S ∪ j2)

It is easy to check that Iv[i j
1
] (S ∪ j2) = 0 by Proposition 3.1 and

Lemma 3.2 for the reduced game v[i j1].

v[i j1](S
′) =

{
c, if S ∪ [ij1] ⊆ S ′

0, else

mS∪j2 (T ,v[i j1]) = 0 for anyT ⊆ {N \ {i, j1} ∪ [ij1]} \ {S ∪ j2}. This

implies that Iv (R) = Iv[i j
1
j
2
] (S∪[ij1j2]). By repeating this argument

for all j ∈ N \ R, we will have Iv (R) = Iv[N \S ] (S ∪ [N \ S]). We can

write the reduced game v[N \S ] as

v[N \S ](S
′) =

{
c, if S ′ = S ∪ [N \ S]

0, else.
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By the Limit (L) property,

Iv[N \S ] (S ∪ [N \ S]) =mS∪[N \S ](∅,v[N \S ]) = c,

which concludes the proof □

We are now ready to characterize interaction indices that uniquely

satisfy the above properties.

Proof of Theorem 3.1. Wefirst show that BII satisfies all the prop-

erties. BII trivially satisfies (S), (L) and (M). To show that it satisfies

(GE), take any S ⊆ N \ ij

IvBAN (S ∪ i) =
1

2
n−s−1

∑
T ⊆N \(S∪i)

mS∪i (T ,v)

=
1

2
n−s−1

∑
T ⊆N \(S∪i j)

[mS (T ∪ i,v) −mS (T ,v)]

+
1

2
n−s−1

∑
T ⊆N \(S∪i j)

[mS (T ∪ ij,v) −mS (T ∪ j,v)]

A similar calculation for j shows that

IvBAN (S ∪ j) =
1

2
n−s−1

∑
T ⊆N \(S∪i j)

[mS (T ∪ j,v) −mS (T ,v)]

+
1

2
n−s−1

∑
T ⊆N \(S∪i j)

[mS (T ∪ ij,v) −mS (T ∪ i,v)]

Thus, IvBAN (S ∪ i) + IvBAN (S ∪ j) equals

1

2
n−s−2 ×

∑
T ⊆N \(S∪i j)

[mS (T ∪ ij, f ) −mS (T , f )] (5)

Equation (5) shows that Iv[i j ] (S ∪ [ij]) = Iv (S ∪ i) + Iv (S ∪ j).
BII satisfies the four axioms; to show that it uniquely satisfies them,

we use the fact that v can be uniquely expressed as the sum of

primitive games;

v =
∑
R⊆N

CRp
R

(6)

We define the index Γ of a cooperative game v to be the minimum

number of terms in the expression of the form (6). We prove the

theorem by induction on Γ. For Γ = 0, in Lemma 3.2, Iv (S) = 0 for

all S ⊆ N , which coincides with the Banzhaf interaction index.

If Γ = 1 then v = CRp
R
for some R ⊆ N . Consider S ⊈ R;

Proposition 3.1 implies that mS (T ,v) = 0 for all T ⊆ N , which

in turn implies Iv (S) = 0 = IvBAN (S). By Lemma 3.3, Iv (R) = CR ,
which equals IvBAN (R) by Proposition 3.2. To complete the proof

for the first inductive step, we need to show that for all S ⊆ R,

Iv (S) = IvBAN (S) =
CR

2
|R |−|S | . If S1, S2 ⊆ R and s1 = s2 then by sym-

metry, Iv (S1) = Iv (S2): we can define a permutation π over N
such that S2 bijectively maps to some S1, and all i < S1 ∪ S2 : are

invariant. By the Symmetry property Iv (S2) = Iπv (S1); however,
πv = v because v = CRp

R
. Now, consider any i1 , i2 ∈ R and

define S := R \ {i1, i2}; by the GE property, we can write

Iv[i
1
i
2
] (S ∪ [i1i2]) = Iv (S ∪ i1) + I

v (S ∪ i2)

which implies for anyQ ⊂ R with |Q | = |R |−1, Iv (Q) = 1

2
Iv[i

1
i
2
] (S∪

[i1i2]). The reduced game v[i1i2] is

v[i1i2](S
′) =

{
CR , if S ∪ [i1i2] ⊆ S ′

0, else

By Lemma 3.3, Iv[i
1
i
2
] (S ∪ [i1i2]) = CR and Iv (Q) = CR

2
. This

property holds for all T ⊂ N , v[T ]; I
v[T ] (N \T ∪ [T ]) = CR . By in-

ductively using the (GE) property, in a manner similar to Lemma 3.3,

we show that Iv (Q) = CR
2
|R |−|Q | . By Proposition 3.2, this coincides

with Banzhaf interaction index concluding the first inductive step.

To complete the proof, assume that Iv (S) coincides with the Banzhaf
interaction index whenever the index of the gamev is at most Γ = γ .
Suppose that v has an index γ + 1, and expressed as

v =

γ+1∑
k=1

CRkp
Rk

Let R =
γ+1⋂
k=0

Rk , and suppose that S ⊈ R. We define another game

w :

w =
∑

k :S ⊆Rk

CRkp
Rk

Since S ⊈ R, the index ofw is strictly smaller than γ + 1. We claim

that for all T ⊆ N \ S ;mS (T ,v) =mS (T ,w). Indeed, consider any

T ⊆ N \ S ;mS (T ,v) equals∑
L⊆S

(−1) |S |− |L |v(T ∪ L) =
∑
L⊆S

(−1) |S |− |L |
γ+1∑
k=1

CRkp
Rk (T ∪ L) =

γ+1∑
k=1

∑
L⊆S

(−1) |S |− |L |CRkp
Rk (T ∪ L) =

γ+1∑
k=1

CRkmS (T ,p
Rk ) =∑

k :S ⊆Rk

CRkmS (T ,p
Rk ) =mS (T ,w)

The second-last equality holds by Proposition 3.1, hence by in-

duction on Γ and monotonicity(M) Iv (S) coincides with BII for all

S ⊈ R.
It remains to show that Iv (S) coincides with BII when S ⊆ R. for
any S ⊆ R, consider any i ∈ S and define S ′ := S \ i . Take any j ∈ N
such that j1 ∈ R1 \R2 ∪R2 \R1. By the (GE) property, we can write

Iv (S) = Iv[i j
1
] (S ′ ∪ [ij1]) − Iv (S ′ ∪ j1) (7)

In Equation (7), S ′ ∪ j1 ⊈ R, therefore as previously shown, Iv (S ′ ∪
j1) coincides with BII for the game v . Consider the restricted game

v[i j1]:

v[i j] =

γ+1∑
k=0

CRkp
Rk \i j1∪[i j1]
[i j1]

Consider j2 , j1 ∈ R1 \ R2 ∪ R2 \ R1. By the (GE) property,

Iv[i j
1
j
2
] (S ′ ∪ [ij1j2]) = Iv[i j

1
] (S ′ ∪ [ij1]) + I

v[i j
1
] (S ′ ∪ j2) (8)

In Equation (8), S ′ ∪ j2 ⊈
I+1⋂
k=1

Rk \ ij1 ∪ [ij1], therefore as we

have shown before, Iv[i j
1
] (S ′ ∪ j2) = I

v[i j
1
]

BAN (S ′ ∪ j2). Let us denote
T = R1 \ R2 ∪ R2 \ R1 and T

′ = i ∪T . By repeating this argument

for all j3, . . . , jt ∈ T and exploiting the (GE) property for each jℓ ,
we can write Iv (S) as:

Iv (S) = Iv[T ′] (S ′ ∪ [T ′]) − Iv (S ′ ∪ j1) −
t∑
l=1

Iv[i j
1
. . .jℓ ] (S ′ ∪ jℓ) (9)
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All of the summands in (9) coincide with BII, because S ′ ∪ jℓ ⊈
I+1⋂
k=1

Rk \ ij1 . . . jℓ−1 ∪ [ij1 . . . jℓ−1] for all ℓ = 1, . . . , t . We can write

the reduced game v[T ′] as

v[T ′] = (CR1
+CR2

)p
(R1∩R2\i)∪[T ′]

[T ′]
+

γ+1∑
k=3

CRkp
(Rk \T ′)∪[T ′]

[T ′]

Thus, the index of the reduced game v[T ′] is strictly smaller than

γ+1. By induction, Iv[T ′] (S ′∪[V ]) coincides with BII for the reduced

game v[T ′]. I
v (S) can be written as

Iv (S) = Iv[T ′] (S ′ ∪ [T ′]) −

t∑
l=1

Iv[i j
1
. . .jℓ ] (S ′ ∪ jℓ)

By using the (GE) property inductively, IvBAN (S) can also be writ-

ten in the same form, which implies that Iv (S) coincides with the

Banzhaf interaction index for all, S ⊆ R. □

3.2 Explaining Our Model Explanations
Does the BII measure make sense in the model explanation domain?

This is purely a function of the strength of the axioms we set forth.

Symmetry is natural enough: if a model explanation depends on the

indices of its features then it fails a basic validity test. The index in

which a feature appears has no bearing on the underlying trained

model (ideally), nor does it affect the outcome.

Recall that Generalized Efficiency requires that model explanations

should be invariant under feature merging. In other words - artifi-

cially treating a pair of features as a single entity (while maintaining

the same underlying model) should not have any effect on how

feature behaviors are explained. Interestingly, Shapley values are

not invariant under feature merging, a result shown by Lehrer

[16]. The following examples illustrate what this entails in actual

applications.

Example 3.4. Consider an sentiment analysis task where a model

predict if a movie review was positive. In a preliminary step the

text is parsed by a parser to be machine readable. This can be done

in many different ways. For example the sentence “This isn’t a

absolutely terrible movie” Can be parsed as

| This | isn’t | a | absolutely | terrible | movie | . |

or as

| This | is | n’t | a | absolut | ely | terrible | movie | . |.

Generalized Efficiency ensures that the influences of “is” and “n’t”

in the second version add up to the influence of “isn’t” in the first.

In other words, Generalized Efficiency ensures that the influence of

features generated through different parsers behaves in a sensible

manner.

Example 3.5. Features might be “merged” in another situation when

features that were readily available during the training of a model

end up being costly to obtain during its deployment. If additionally

these features are highly correlated with other features they might

just be coupled. E.g. generally birds can fly, so the features is_bird

and can_fly may simply be merged at prediction time
1
, to make

it easier to enter information into a classifier. Again, Generalized

1
The authors are aware of the existence of ostriches, emus, penguins and the fearsome

cassowary.

Efficiency ensures that the influence of the merged feature relates

in a natural way to the influence of the original features.

The Limit condition normalizes the overall influence to be the

discrete derivative of v(·, f ) with respect to N . In other words,

the total influence distributed to sets of features equals the total

marginal effect of reverting features to their baseline values. This is

an interesting departure from other efficiency measures. Shapley-

based measures require efficiency with respect to f (®x) (or variants
thereof), i.e. the total amount of influence should equal the total

value the classifier takes at the point of interest (or the difference

between the classifier and the baseline value). We require that the

total influence equals the (discretized) rate in which features change

the outcome. This makes BII more similar in spirit to gradient based

model explanations, which are often used as the basic mechanism

for generating model explanations in several application domains

[23].

Monotonicity is a very natural property in the model explanation

domain: if a set of features has a greater effect on the value f (®x),
this should be reflected in the amount of influence one attributes

to it. This has already been established in prior works, for Shapley-

based measures [9, 18]. However, this property does not naturally

generalize when using Shapley-based high-dimensional model ex-

planations. Agarwal et al. [1] propose a novel generalization of the

Shapley value to high-dimensional model explanations, which fails

monotonicity for smaller interactions (size of < k) for k−th order

explanation, however, interactions of size k follow monotonicity.

Example 3.6. Given a function fc (x1, x2, x3) = cx1x2x3 with c > 0

defined on binary input space (for example, f is the result of an

image classification task where xi denotes the presence/absence of
particular super-pixel). We assume that the baseline is ®x ′ = (0, 0, 0).

Thus, v(S, ®x, ®x ′, fc ) = 0 if {2, 3} ⊈ S , resulting in v({2, 3}, fc ) = 0

and v(N , fc ) = v({1, 2, 3}, fc ) = cx1x2x3. What is the interaction

value between 1 and 2? Intuitively {1, 2} offer some degree of in-

teraction that monotonically grows as c increases. Moreover, it is

easy to see that v(·, fc ) ≥ v(·, fc ′) whenever c ≥ c ′. Set-QII fails
to satisfies the monotoncity, and fails to capture the interaction

between {1, 2} for any c . Set-QII({1, 2}, S, fc ) = 0 for all c .
Similarly, the Shapley-Taylor interaction index for S = {1, 2} and

k = 3 is 0 as it does not follow the monotonicity property, however

for k = 2 it satisfies monotonicity and interaction value for {1, 2}

is
c
3
. The BII value for {1, 2} is c .

In the next example, we demonstrate that the Shapley interaction

index can be misleading in simple situations. We consider the gen-

eral majority classification function which exhibits pairwise feature

interaction. Shapley interaction indices fail to capture these interac-

tions. Moreover, Shapley-Taylor interaction indices fail to capture

the sign of pairwise interactions for the same function.

Example 3.7. Consider a classification function whose input space

is binary. Let the classification function f be: f (x1, . . . , xn ) = 1

iff

∑
i xi ≥ k and 0 elsewhere with the baseline vector ®x ′ = ®0.

Thus, v(S, ®1, ®x ′) = 1 iff |S | ≥ k and 0 otherwise. For k = n
2
, the

function coincides with the majority function discussed in the

cooperative game theory literature. Clearly, there exists pairwise

interaction among features, however, the Shapley interaction value

for each pairwise feature is 0. In contrast, the pairwise Banzhaf
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®x

Figure 1: A scenario where a linear approximation cannot
explain the complex model’s behavior well.

interaction index for any feature pair {i, j} is ck (2k − (n+ 3)) where
ck > 0. Pairwise interaction is negative when 2k < n + 3. This can
be explained by the following argument: the number of winning

coalitions containing {i, j} is
(n−2
k−2

)
, and the number of winning

coalitions that do not contain {i, j}
(n−2
k
)
, which is higher for smaller

k . This shows that {i, j} has more interaction effect for the output

0. On the other hand, the Shapley-Taylor pairwise interaction index

is
2

n(n−1) , and fails to capture the sign of the interaction index.

In this section, we argued about our proposed model explanation

makes sense for capturing feature interaction in black-box decision

making. In Section 4, we show that BII can be interpreted as a

polynomial approximation, offering additional intuition as to why

our explanation method is good.

4 GEOMETRICAL INTERACTION AND BII
The geometry of model explanation is relatively well understood

for attribute-based methods [18, 21, 24]; Ribeiro et al. [21] suggest

that attribute-based explanation methods can be thought of a local

linear approximation of a black-box function f (·) around a point

of interest (POI) ®x . Linear attribution methods take the following

form:

д(®x) = I0 +
N∑
i=1

Iixi (10)

In Equation (10), Ii captures the importance of feature i . The ma-

jor problem with these methods is that the underlying black-box

model can be extremely non-linear around POI ®x . In those cases, the
explanation fails to approximate the black-box model f . Figure 1
illustrates such a scenario. We note that the point of interest in

Figure 1 has no particular linear local model that well approximates

the true model; this is not unusual when considering model outliers.

What’s worse, outliers are often the points that need to be explained

the most. In order to better capture the behavior of a black-box

model f , we can naturally consider a higher-order polynomial as a

local approximation instated of a simple local linear approximation.

For better visualization, we first assume that the black-box model

f : {0, 1}N → R takes a binary input vector mainly referred to as

the humanly understandable feature representation [18, 21]. Inter-

action among a set of features can be thought of as a higher-order

polynomial approximation extending the attribute-based explana-

tion. First, we start with quadratic approximation of the black-box

model f (·),

дk (®x) = I0 +
N∑
i=1

I (i)xi +
∑
i<j

I ({i, j})xix j (11)

In Equation (11), I ({i, j}) captures the interaction between feature

i and j; I (i), I (j) capture the importance of i and j, as they do in

Equation (10). Thus, it is not unreasonable to assume that I ({i, j})
capture the pure interaction effect of i and j: we can delegate the

singular effects to I (i), having the resultant coefficient of xix j cap-
ture the ‘pure’ interaction between i and j . For instance, consider a
sentiment analysis problem, both the tokens “bad” and “not” have

negative influence on the machine learning task. However, when

they are present together as “not bad”, their influence is positive.

In this simple example, it would be desirable to have I (“not”) and
I (“bad”) < 0, but I ({“not”,“bad”}) > 0. The idea of higher order

interactions can be extended similarly.

Consider a global polynomial approximation of f (·) by a k-degree
polynomial in Equation (12)

дk (®x) = I0 +
∑

S ⊂N ; |S ′ |<k

(
I (S ′)

∏
j ∈S ′

x j
)
+

∑
S ⊂N ; |S |=k

(
I (S)

∏
j ∈S

x j
)

(12)

Again, to capture interaction among the set of features S such that

|S | = k , we should remove all internal interaction effects captured

by I (S ′) for S ′ ⊂ S .
Therefore in Equation 12; I (S) for |S | = k can be thought of an

interaction effect of subset of features S for the underlying black-

box model f (·). The polynomial дk is meant to locally approximate

f around the POI ®x ; what is the best approximation? Finding the

best fitting polynomial of the highest possible degree seems like

a natural objective. However, we argue that taking this approach

runs the risk of ignoring lower order feature interactions and their

possible effects.

Example 4.1. Consider the degree 3 polynomial studied in Example

3.6, f (x1, x2, x3) = cx1x2x3 with the baseline set to (1, 1, 1) (rather

than (0, 0, 0) as was the case in Example 3.6). The best approxima-

tion to f is clearly itself. However, if we do so, then the interaction

coefficients for variable pairs will be zero. This is arguably unde-

sirable: for example, if ®x = (0, 0, 1), then x3 has virtually no impact

(it is already set at the baseline). Similarly, x1 and x2 have little

individual effect, but do have significant joint effect - it is only

when both are set to 1 that we observe any change in label.

Now we formally define the optimization problem to find the “best”

k-degree polynomial approximation of the black-box model f (·)

globally. Let Pk
be the set of k-degree polynomials of the form

дk (®x) = I0 +
∑

S ⊂N ; |S | ≤k

©«I (S)
∏
j ∈S

x j
ª®¬ .

We are interested in finding a polynomial дkf (·) which globally

minimizes the quadratic loss between f (®x) and д(®x) ∈ Pk
for all

®x ∈ 2
N
, i.e.

дkf (®x) = argmin

д(·)∈Pk

∑
®x ∈2N

[f (®x) − д(®x)]2 (13)
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The interaction among features in S with |S | = k is measured as

the coefficient of

∏
i ∈S xi in the least square approximation of

f (·) with a polynomial of degree k . Theorem 4.2 shows that this

geometrical definition of feature interaction coincides with the

Banzhaf interaction index.

Theorem 4.2. Let дkf (®x) be the k-degree solution of the optimization
problem in Equation (13). Then the coefficients of

∏
i ∈S xi for |S | = k

is given by the Banzhaf interaction index (see Equation 3).

Proof. The proof of the Theorem is a simple corollary of Hammer

and Holzman [14, Theorem 4.2]. □

Theorem 4.2 provides an intuitive argument for BII being a “good”

measure for capturing feature interaction.

5 CONCLUSIONS AND FUTUREWORK
We discuss the problem of identifying and measuring interactions

among features in decision-making algorithms. We present a novel

characterization of the Banzhaf interactionmeasure which uniquely

satisfies a set of natural properties. In addition, it optimizes a natural

objective function, providing a geometrical interpretation of our

interaction measure.

Designing provably sound higher-order explanations for machine

learning models in high stake domains is important. Axiomatizing

model explanations mathematically justifies the chosen interaction

measure, which helps foster trust in the explanation method. In

this paper we have only demonstrated the mathematical properties

of our interaction measures, however, we will add an extensive

experiment section to show the effectiveness of our measure and

axiomatics in the full version of this work.

We believe that the game theory/fair division community should be

an active part of the discussion of algorithmic transparency. There

seems to be a general receptiveness of applying cooperative solution

concepts in model explanation, most prominently the Shapley value.

However, other solution concepts are considered (e.g. variants of the

Banzhaf index as seen in this work and others [7, 24]) and even the

core [29]. More importantly, axiomatic approaches, commonly used

in the economic literature, are finding their way into the field, as the

need for provable trustworthiness in high-stakes ML applications

grows.
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