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ABSTRACT
We initiate the study of multi-layered cake cutting with the goal
of fairly allocating multiple divisible resources (layers of a cake)
among a set of agents. The key requirement is that each agent can
only utilize a single resource at each time interval. Several real-life
applications exhibit such restrictions on overlapping pieces, for
example, assigning time intervals over multiple facilities and re-
sources or assigning shifts to medical professionals. We investigate
the existence and computation of envy-free and proportional al-
locations. We show that envy-free allocations are guaranteed to
exist for up to three agents with two types of preferences, when
the number of layers is two. We further devise an algorithm for
computing proportional allocations for any number of agents when
the number of layers is factorable to three and/or some power of
two.

1 INTRODUCTION
Consider a group of students who wish to use multiple college
facilities such as a conference room and an exercise room over
di�erent periods of time. Each student has a preference over what
facility to use at di�erent time of the day: Alice prefers to set her
meetings in the morning and exercise in the afternoon, whereas
Bob prefers to start the day with exercising for a couple of hours
and meet with his teammates in the conference room for the rest
of the day.

The fair division literature has extensively studied the problem
of dividing a heterogeneous divisible resource (aka a cake) among
several agents who may have di�erent preference over the vari-
ous pieces of the cake [5, 17, 18]. These studies have resulted in a
plethora of axiomatic and existence results [3, 12] as well as compu-
tational solutions [2, 16] under a variety of assumptions, and were
successfully implemented in practice (see [4, 15] for an overview).
In the case of Alice and Bob, each facility represents a layer of
the cake in a multi-layered cake cutting problem, and the question
is how to allocate the time intervals (usage right) of the facilities
according to their preferences in a fair manner.

One naive approach is to treat each cake independently and solve
the problem through well-established cake-cutting techniques by
performing a fair division on each layer separately. However, this
approach has major drawbacks: First, the �nal outcome, although
fair on each layer, may not necessarily be fair overall. Second, the
allocation may not be feasible, i.e., it may assign two overlapping
pieces (time intervals) to a single agent. In our example, Alice
cannot simultaneously utilize the exercise room and the conference
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room at the same time if she receives overlapping intervals. Several
other application domains exhibit similar structures over resources:
assigning nurses to various wards and shifts, doctors to operation
rooms, and research equipment to groups, to name a few.

In multi-layared cake cutting, each layer represents a divisible re-
source. Each agent has additive preferences over every disjoint (non-
overlapping) intervals. A division of a multi-layered cake is feasible
if no agent’s share contain overlapping intervals, and is contiguous
if each allocated piece of a layer is contiguous. There has been
some recent work on dividing multiple cakes among agents [7, 11].
Yet, none of the previous work considered the division of multiple
resources under feasibility and contiguity constraints. Therefore,
in this setting we ask the following research question:

What fairness guarantees can be achieved under feasi-
bility and contiguity constraints for various number of
agents and layers?

1.1 Our Results
We initiate the study of the multi-layered cake cutting problem
for allocating divisible resources, under contiguity and feasibility
requirements. Our focus is on two fairness notions, envy-freeness
and proportionality. Envy-freeness (EF) requires that each agent
believes no other agent’s share is better than its share of the cake.
Proportionality (Prop) among n agents requires that each agent
receives a share that is valued at least 1

n of the value of the entire
cake. For e�ciency, we consider complete divisions with no leftover
pieces.

Focusing on envy-free divisions, we show the existence of envy-
free and complete allocations for two-layered cakes and up to three
agents with at most two types of preferences. These cases are partic-
ularly appealing since many applications often deal with dividing a
small number of resources among few agents (e.g. assigning meet-
ing rooms). We then show that proportional complete allocations
exist for three agents and three layers and can be computed e�-
ciently. Subsequently, we show that although this result cannot
be immediately extended to any number of agents and layers, a
proportional complete allocation exists when the number of layers
is factorable to a product of three and powers of two. We defer some
proofs to the full version of the paper, due to space constraints.

1.2 Related Work
In recent years, cake cutting has received signi�cant attention in
arti�cial intelligence and economics as a metaphor for algorith-
mic approaches in achieving fairness in allocation of resources
[1, 6, 10, 16]. Recent studies have focused on the fair division of
resources when agents have requirements over multiple resources
that must be simultaneously allocated in order to carry out certain
tasks (e.g. CPU and RAM) [8, 9, 14]. The most relevant work to
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Agents (n) Layers (m) EF Prop

2 2 3(Thm. 4.1 ) 3
3 2 3(Thm. 4.3†) 3
n � m 2a , a 2 Z+ ? 3(Thm. 5.8)
n � m 2a3b , a 2 Z+, b 2 {0, 1} ? 3(Thm. 5.7})

Table 1: The overview of our results. † assumes two types of
agents’ preferences. } indicates that existence holds without
contiguity requirement. Note that whenm > n, no complete
and feasible (non-overlapping) solution exists.

ours is the envy-free multi-cake fair division that considers divid-
ing multiple cakes among agents with linked preferences over the
cakes. Here, agents can simultaneously bene�t from all allocated
pieces with no constraints. They show that envy-free divisions with
only few cuts exist for two agents and many cakes, as well as three
agents and two cakes [7, 11, 13]. In contrast, a multi-layered cake
cutting requires non-overlapping pieces. Thus, [7]’s generalized
envy-freeness notion on multiple cakes does not immediately im-
ply envy-freeness in our setting and no longer induces a feasible
division.

2 OUR MODEL
Our setting includes a set of agents denoted by N = [n], a set of
layers denoted by L = [m], where for a natural number s 2 N,
[s] = {1, 2, . . . , s}. Given two real numbers x,� 2 R, we write
[x,�] = { z 2 R | x  z  � } to denote an interval. We denote
by R+ (respectively Z+) the set of non-negative reals (respectively,
integers) including 0. A piece of cake is a �nite set of disjoint subin-
tervals of [0, 1]. We say that a subinterval of [0, 1] is a contiguous
piece of cake. Anm-layered cake is denoted by C = (Cj )j 2L where
Cj ✓ [0, 1] is a contiguous piece for j 2 L. We refer to each j 2 L as
j-th layer and Cj as j-th layered cake.

Each agent i is endowed with a non-negative integrable density
function �i j : Cj ! R+. For a given piece of cake X of j-th layer,
Vi j (X ) denotes the value assigned to it by agent i , i.e., Vi j (X ) =Õ
I 2X

Ø
x 2I �i j (x)dx . These functions are assumed to be normalized

over layers:
Õ
j 2L Vi j (Cj ) = 1 for each i 2 N . A layered piece is a

sequence X = (X j )j 2L of pieces of each layer j 2 L; a layered piece
is said to be contiguous if eachX j is a contiguous piece of each layer.
We assume valuation functions are additive on layers and write
Vi (X) = Õ

j 2L Vi j (X j ).
A layered contiguous piece is said to be non-overlapping if no

two pieces from di�erent layers overlap, i.e, for any pair of distinct
layers j, j 0 2 L and for any I 2 X j and I 0 2 X j0 , I \ I 0 = ;. For two
layered pieces X and X0, we say that agent i weakly prefers X to
X0 if Vi (X) � Vi (X0).

A multi-allocation A = (A1,A2, . . . ,An ) is a partition of the
m-layered cake C where each Ai = (Ai j )j 2L is a layered piece of
the cake allocated to agent i; we refer to eachAi as a bundle of i . For
a multi-allocation A and i 2 N , we write Vi (Ai ) =

Õ
j 2L Vi j (Ai j )

to denote the value of agent i for Ai . A multi-allocation A is said
to be

• contiguous if each Ai for i 2 N is contiguous;
• feasible if each Ai for i 2 N is non-overlapping.

We focus on complete multi-allocations where the entire cake
must be allocated. Notice that some layers may be disjoint (see Fig-
ure 1), and the number of agents must exceed the number of layers,
i.e. n � m; otherwise the multi-allocation will contain overlapping
pieces.

Fairness. A multi-allocation is said to be envy-free if no agent
envies the others, i.e., Vi (Ai ) � Vi (Ai0) for any pair of agents
i, i 0 2 N . A multi-allocation is said to be proportional if each agent
gets his proportional fair share, i.e., Vi (Ai ) � 1

n for any i 2 N . The
following implication, which is well-known for the standard setting,
holds in our setting as well.

L���� 2.1. An envy-free complete multi-allocation satis�es pro-
portionality.

P����. Consider an envy-free complete multi-allocation Ai =
(Ai j )j 2L and an agent i 2 N . By envy-freeness, we have that
Vi (Ai ) � Vi (Aj ) for any j 2 N . Summing over j 2 N , we get
Vi (Ai ) � 1

n
Õ
j 2N Vi (Aj ) = 1

n by additivity. ⇤

Example 2.2 (Resource sharing). Suppose that there are three
meeting rooms r1, r2, and r3 with di�erent capacities, and three re-
searchers Alice, Bob, and Charlie. The �rst room is available all day,
the second and the third rooms are only available in the morning
and late afternoon, respectively (see Fig. 1). Each researcher has a
preference over the access time to the shared rooms. For example,
Alice wants to have a group meeting in the larger room in the
morning and then have an individual meeting in the smaller one in
the afternoon.

Them-layered cuts. In order to cut the layered cake while satisfy-
ing the non-overlapping constraint, we de�ne a particular approach
for partitioning the entire cake into diagonal pieces. Consider the
m-layered cake C wherem is an even number. For each point x of
the interval [0, 1], we de�ne

• LR(x, C) = (–m
2
j=1Cj \ [0, x]) [ (–m

j=m2 +1
Cj \ [x, 1]);

• RL(x, C) = (–m
2
j=1Cj \ [x, 1]) [ (–m

j=m2 +1
Cj \ [0, x]).

LR(x, C) consists of the top-half subintervals of points left of x and
the lower-half subintervals of points right of x ; similarly, RL(x, C)
consists of the top-half subintervals of points right of x and the
lower-half subintervals of points left of x (Fig. 2). We abuse the
notation and write LR(x) = LR(x, C) and RL(x) = RL(x, C) if C is
clear from the context.

r1

r2

r3

time

Figure 1: Example of a multi-layered cake. There are three
meeting rooms r1, r2, and r3 with di�erent capacities, shared
among several research groups.
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x = 0

LR(x)

RL(x)
j = 1

j = 2

j = 3

j = 4

x = 2
5

LR(x)

LR(x)

RL(x)

RL(x)

j = 1

j = 2

j = 3

j = 4

Figure 2: Examples of the partitions induced by x = 0 and
x = 2

5 for a four-layered cake.

Computational model. Following the standard Robertson-Webb
Model [17], we introduce two types of queries: those for a cake on
each layer (called a short knife) and those for the entire cake (called
a long knife).

Short knife. Short eval query: given an interval [x,�] of the j-th
layered cake Cj , e�alj (i, x,�) asks agent i for its value [x,�], i.e.,
Vi j ([x,�]). Short cut query: given a point x and r 2 [0, 1], cutj (i, x, r )
asks agent i for the minimum point � such that Vi j ([x,�]) = r .

Long knife. Long eval query: given a point x , e�al(i, x) asks agent
i for its value LR(x), i.e.,Vi (LR(x)). Long cut query: given r 2 [0, 1],
cut(i, r ) asks agent i for the minimum point x such thatVi (LR(x)) =
r if such point x exists.

3 EXISTENCE OF A SWITCHING POINT
We start by showing the existence of a point x that equally divides
the entire cake into two pairs of diagonal pieces, both for the in-
dividuals and for the majority; these will serve as a fundamental
property in our problem. We say that x 2 [0, 1] is a switching point
for agent i over a layered cake C if Vi (LR(x)) = Vi (RL(x)).

L���� 3.1. Suppose that the numberm of layers is even. Let r 2 R
be such that Vi (LR(0)) � r and Vi (RL(0))  r for some agent i 2 N .
Then, there exists a point x 2 [0, 1] such that i values LR(x) exactly
at r , i.e.Vi (LR(x)) = r . In particular, a switching point for i always
exists.

P����. Suppose that Vi (LR(0)) � r and Vi (RL(0))  r . Consider
the function f (x) = Vi (LR(x)) for x 2 [0, 1]. Recall that f (x) is a
continuous function written as the sum of continuous functions:
f (x) = Õm

2
j=1Vi j (Cj \[0, x])+

Õm
j=m2 +1

Vi j (Cj \[x, 1]). Since f (0) �
r and f (1)  r , there is a point x 2 [0, 1] with f (x) = r by the
intermediate value theorem, which proves the claim. Further, by
taking r = 1

2 , the point x where Vi (LR(x)) = 1
2 is a switching point

for agent i . ⇤

We will generalize the notion of a switching point from the
individual level to the majority. For layered contiguous pieces I
and I 0, we say that the majority weakly prefer I to I 0 (denoted
by I

m
⌫ I 0) if there exists S ✓ N such that |S | � dn2 e and each i 2 S

weakly prefers I to I 0. We say that x 2 [0, 1] is amajority switching

point over C if LR(x)
m
⌫ RL(x) and RL(x)

m
⌫ LR(x). The following

lemma guarantees the existence of a majority switching point, for
any even number of layers and any number of agents.

L���� 3.2. Suppose that the numberm of layers is even. Then,
there exists a majority switching point for any number n � m of
agents.

P����. Suppose without loss of generality that the majority
of agents weakly prefer LR(0) to RL(0). Since LR(0) = RL(1) and
RL(0) = LR(1), this means that by the time when the long knife
reaches the right-most point, i.e., x = 1, the majority preference
switches.

Formally, consider the following set of points x 2 [0, 1] where
the majority weakly prefer LR(x) to RL(x):

M := { x 2 [0, 1] | LR(x)
m
⌫ RL(x) }.

We will �rst show thatM is a compact set. Clearly,M is bounded.
To show thatM is closed, consider an in�nite sequence as follows
X = {xk }k=1,2, ... ✓ M that converges to x⇤. For each k = 1, 2, . . .,
we denote by Sk the set of agents who weakly prefer LR(xk ) to
RL(xk ); by de�nition, |Sk | � dn2 e. Since there are �nitely many
subsets of agents, there is one subset Sk j N that appears in�nitely
often; let S⇤ be such subset and {x⇤k }k=1,2, ... be an in�nite sub-
sequence of X such that for each k , each agent in S⇤ weakly prefers
LR(x⇤k ) to RL(x

⇤
k ). Since the valuationsVi for i 2 S⇤ are continuous,

each agent i 2 S⇤ weakly prefers LR(x⇤) to RL(x⇤) at the limit x⇤,
which implies that x⇤ 2 M and hence M is closed. Now since M
is a compact set, the supremum t⇤ = supM belongs to M . By the
maximality of t⇤, at least dn2 e agents weakly prefer RL(t⇤) to LR(t⇤).
Since t⇤ 2 M , at least dn2 e agents weakly prefer LR(t⇤) to RL(t⇤) as
well. Thus, t⇤ corresponds to a majority switching point. ⇤

4 ENVY-FREE MULTI-LAYERED CAKE
CUTTING

Now we will look into the problem of obtaining complete envy-
free multi-allocations, while satisfying non-overlapping constraints.
When there is only one layer, it is known that an envy-free con-
tiguous allocation exists for any number of agents under mild as-
sumptions on agents’ preferences [19, 20]. Given the contiguity
and feasibility constraints, the question is whether it is possible to
guarantee an envy-free division in the multi-layered cake-cutting
model.

4.1 Two agents and two layers
We answer the above question positively for a simple, yet important,
case of two agents and two layers. The standard protocol that
achieves envy-freeness for two agents is known as the cut-and-
choose protocol: Alice divides the entire cake into two pieces of
equal value. Bob selects his preferred piece over the two pieces,
leaving the remainder for Alice.

We extend this protocol to the multi-layered cake cutting using
the notion of a switching point. Alice �rst divides the layered cake
into two diagonal pieces: one that includes the top left and lower
right parts and another that includes the top left and lower left
parts of the cake. Our version of the cut-and-choose protocol is
speci�ed as follows:
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Cut-and-choose protocol for n = 2 agents over a two-layered
cake C:
Step 1. Alice selects her switching point x over C.
Step 2. Bob chooses a weakly preferred layered contiguous piece
among LR(x) and RL(x).
Step 3. Alice receives the remaining piece.

x

LR(x)

LR(x)RL(x)

RL(x)

Figure 3: Cut-and-Choose for two-layered cake

T������ 4.1. The cut-and-choose protocol yields a complete envy-
free multi-allocation that is feasible and contiguous for two agents and
a two-layered cake using O(1) number of long eval and cut queries.

P����. It is immediate to see that the protocol returns a com-
pletemulti-allocationwhere each agent is assigned to a non-overlapping
layered contiguous piece. The resulting allocation satis�es envy-
freeness: Bob does not envy Alice since he chooses a preferred piece
among LR(x) and RL(x). Alice does not envy Bob by the de�nition
of a switching point. ⇤

As we noted in Section 2, the existence result for two agents
does not extend beyond two layers: if there are at least three layers,
there is no feasible multi-allocation that completely allocates the
cake to two agents.

4.2 Three agents and two layers
We now move on to the case of three agents and two layers. We
will design a variant of Stromquist’s protocol that achieves envy-
freeness for one-layered cake [19]: The referee moves two knives:
a short knife and a long knife. The short knife moves from left to
right over the top layer and gradually increases the left-most top
piece (denoted by Y ), while the long knife keeps pointing to the
point x , which can partition the remaining cake into two diagonal
pieces LR(x) and RL(x) in an envy-free manner. Each agent shouts
when the left-most top piece Y becomes at least as highly valuable
as the preferred piece among LR(x) and RL(x). Some agent, say
s , shouts eventually (before the left-most top piece becomes the
top layer), assuming that there is at least one agent who weakly
prefers the top layer to the bottom layer. We note that x may be
positioned left to �; see Figure 4 for some possibilities of the long
knife’s locations.

We will show that the above protocol works, for a special case
when there are at most two types of preferences: In such cases, the
majority switching points coincide with the switching points of an
agent with the majority preference.

L���� 4.2. Suppose thatm = 2, n = 3, and there are two di�erent
agents i, j 2 N with the same valuation V . Then, x is a majority
switching point over C if and only if x is a switching point for i .

An obvious implication of the above lemma is that when per-
forming Stromquist’s protocol, one can point out to a switching

point of an individual, instead of a majority one. This allows the
referee to move a long knife continuously. For a given two-layered
cake C, we write C�� = (C��

1 ,C2) as a two-layered cake obtained
from C where the �rst segment [0,�] of the top layer is removed,
i.e.,C��

1 = C1 \[0,�]. For each majority switching point x over C�� ,
we select three di�erent agents `(x),m(x), and r (x) as follows:

• `(x) is an agentwhoweakly prefersLR(x, C�� ) toRL(x, C�� );
• m(x) is an agent who is indi�erent between LR(x, C�� ) and
RL(x, C�� ); and

• r (x) and agent who weakly prefers RL(x, C�� ) to LR(x, C�� ).

Moving-knife protocol for n = 3 agents over a two-layered
cake C: w.l.o.g. assume that at least one agent weakly prefers the
top layer (j = 1) over the bottom layer (j = 2)
Step 1. The referee continuously moves a short knife from the
left-most point (� = 0) to the right-most point (� = 1) over the
top layer, while continuously moving a long knife pointing to a
switching point over C�� for i . Let � be the position of the short
knife and Y be the top layer piece to its left. Let x be the position
of the long knife.
Step 2. The referee stops moving the short knife when some agent
s shouts, i.e., Y becomes at least as highly valuable as the preferred
piece among LR(x, C�� ) and RL(x, C�� ).
Step 3.We allocate the shouter s to the left-most top piece Y and
partitions the rest into LR(x, C�� ) and RL(x, C�� ).

• If s = `(x), then we allocate LR(x, C�� ) to m(x) and
RL(x, C�� ) to r (x).

• If s = m(x), then we allocate LR(x, C�� ) to `(x) and
RL(x, C�� ) to r (x).

• If s = r (x), then we allocate LR(x, C�� ) to `(x) and
RL(x, C�� ) tom(x).

T������ 4.3. Suppose thatm = 2, n = 3, and for each i 2 N and
j 2 L,�i j is continuous. If there are two di�erent agents with the same
valuation, an envy-free complete multi-allocation that is feasible and
contiguous exists.

P����. Assume w.l.o.g. that at least one agent prefers the top
layer over the bottom layer. This means that such agent weakly
prefers the top layer to any of the pieces LR(z, C�� ) and RL(z, C�� )
when � = 1. Suppose that i 2 N is one of the two di�erent agents
with the same valuations. We design the following protocol for
three agents over a two-layered cake:

By our assumption, some agent eventually shouts and thus the
protocol returns an allocationA. Clearly,A is feasible, contiguous,
and complete. Also, it is easy to see that the shouter s who receives
a bundle Y does not envy the other two agents. The agents i , s
do not envy s because the referee continuously moves both a short
and a long knife. Finally, the agents i , s do not envy each other by
the de�nition of a majority switching point and by Lemma 4.2. ⇤

In the general case, achieving envy-free multi-allocations deems
to be challenging due to the non-monotonicity of valuations over
diagonal pieces.1 Therefore, we focus our attention on the less
demanding fairness notion of proportionality.

1See Section 6 for an extensive discussion.
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Y

RL(x)

RL(x)

LR(x)

x �

Y

x�

RL(x)

RL(x)LR(x)

LR(x)

Figure 4: Moving knife protocol for three agents over a two-
layered cake. Note that the position of x may appear before
�.

5 PROPORTIONAL MULTI-LAYERED CAKE
CUTTING

Focusing on a less demanding fairness notion, it turns out that a
complete proportional multi-allocation that is feasible exists for
a wider class of instances, i.e., when the number m of layers is
a product of three and some power of two, and the number n of
agents is at least m. Notably, we show that the problem can be
decomposed into smaller instances when the number of agents is
greater than the number of layers, or the number of layers is a
power of two. Building up on the base cases of two and three layers,
our algorithm recursively calls the same algorithm to decide on
how to allocate the cake of the sub-problems. We �rst proceed by
showing how to solve the base case: For three layers and three
agents, a feasible proportional multi-allocation exists and can be
e�ciently computed.

T������ 5.1. A proportional complete multi-allocation that is
feasible exists for three layers and three agents and can be computed
usingO(1) number of short eval queries and long eval and cut queries.
Further, each bundle of the resulting multi-allocation includes at most
two contiguous pieces within each layer.

We start by showing two auxiliary lemmas. We de�ne a merge
of two disjoint contiguous pieces Ij and Ij0 of layers j and j 0 as
replacing the j-th layered cake with the union Ij [ Ij0 and remov-
ing j 0-th layered cake. The merge of a �nite sequence of mutually
disjoint contiguous pieces (I1, . . . , Ik ) can be de�ned inductively:
merge (I1, . . . , Ik�1) and then apply the merge operation to the
resulting outcome and Ik . Now we observe that if there are two
disjoint layers, one can safely merge these layers and reduce the
problem size.

L���� 5.2. Suppose that Cj and Cj0 are two disjoint layers of
a layered cake C, and C0 is obtained from C by merging Cj and
Cj0 . Then, each non-overlapping contiguous layered piece of C0 is a
non-overlapping contiguous layered piece of the original cake C.

The above lemma can be generalized further: Let C be a 2m-
layered cake and x 2 [0, 1]. We de�ne a merge of LR(x) = (Sj )j 2L
by merging the pair (Sj , Sj+m ) for each j 2 [m]. A merge of RL(x)
can be de�ned analogously. Such operation still preserves both
feasibility and contiguity.

C�������� 5.3. Let C be a 2m-layered cake and x 2 [0, 1]. Sup-
pose that C0 is am-layered cake obtained by merging LR(x) or RL(x).

Then, each non-overlapping contiguous layered piece of C0 is a non-
overlapping contiguous layered piece of the original cake C.

Below, we show that each agent can divide the entire cake into
n equally valued layered pieces. A multi-allocationA is equitable if
for each agent i 2 N ,Vi (Ai ) = 1

n . We design a recursive algorithm
that iteratively �nds two layers for which one has value at most
1
m and at least 1

m and removes a pair of diagonal pieces of value
exactly 1

m from the two layers.

L���� 5.4. For any numberm of layers and any number n =m
of agents with the identical valuations, an equitable complete multi-
allocation that is feasible and contiguous exists and can be found
using O(m2) number of short eval queries and O(m) number of long
cut queries.

P����. We denote by V = Vi the valuation function for each
agent i 2 N . Consider the following recursive algorithm D that
takes a subset N 0 of agents with |N 0 | � 1, a |L0 |-layered cake C0,
and a valuation pro�le (Vi )i 2N 0 , and returns an equitable complete
multi-allocation of the layered cake to the agents. When |L0 | =
|N 0 | = 1, then the algorithm allocates the entire cake to the single
agent. Suppose that |L0 | = |N 0 | � 2. The algorithm �rst �nds a layer
j whose entire value is at most 1

m and another layer j 0 whose entire
value is at least 1

m . The algorithm D then �nds a point x 2 [0, 1]
whereV (Sj [Sj0) = 1

m for Sj = Cj \[0, x] and Sj0 = Cj \[x, 1]; such
point exists due to Lemma 3.1. We allocate Sj [Sj0 to one agent and
apply D to the remaining cake C00 with |N 0 | � 1 agents where C00

is obtained from merging the remaining j-th layered cake Cj \ Sj
and the j 0-th layered cakeCj0 \Sj0 . The correctness of the algorithm
as well as the bound on the query complexity are immediate. ⇤

Equipped with Lemma 5.4, we will prove Theorem 5.1.

I11

I12

I13

I21

I22I32

I33

I21 I22

I32 I33

Figure 5: Protocol for proportionality for three agents and
three layers. Alice divides the entire cake into three equally
valued layered pieces I1, I2, and I3 (the left picture). Here,
Ii = (Ii j )j=1,2,3 for each i = 1, 2, 3 where I23 = I31 = ;. After al-
locating I1 to either Alice or Charlie, the algorithm merges
I2, and I3 and applies the cut-and-choose among the remain-
ing agents (the right picture).

P���� �� T��. 5.1. Suppose there are three agents: Alice, Bob,
and Charlie. Our procedure for achieving proportionality on a three-
layered cake works as follows. See Figure 5 for an illustration.
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A protocol for proportionality for n = 3 agents over a three-
layered cake C:
Step 1. Alice partitions the cake into three non-overlapping lay-
ered contiguous pieces I1, I2, and I3 which she considers of equal
value, using the algorithm in the proof of Lemma 5.4.
Step 2. Assume w.l.o.g. that I1 is the piece for which Bob has value
at most 1

3 .
Step 3. Decide on the agent who is assigned to I1 depending on
the preference of Charlie.
Step 3-1. If Charlie values I1 at least his proportional fair share 1

3 ,
then allocate it to him.
Step 3-2. Otherwise, allocate I1 to Alice.
Step 4.Merge all the disjoint contiguous pieces in I2 and I3, respec-
tively, and create a two-layered cake C0 consisting of each merge
of I2 and I3. Apply the cut-and-choose protocol to C0 among the
remaining agents.

We will �rst show that the resulting multi-allocation A is pro-
portional. Clearly, the agent who gets I1 has proportional fair
share for his bundle. Further, each i of the remaining agents have
value at least 2

3 for the remaining instance; thus, Vi (Ai ) is at least
Vi (I2)+Vi (I3)

2 � 1
3 . Further, each bundle contains at most two con-

tiguous pieces from each layer of C: If Ai = I1, then Ai is con-
tiguous. If Ai = LR(x, C0) for some x 2 R, then each layer of C0

contains at most one contiguous piece of the original layers in C;
since Ai is contiguous with respect to C0, it contains at most two
contiguous pieces of every distinct layer of C. A similar argument
applies to the case when Ai = RL(x, C0) for some x 2 R. Finally, it
can be easily veri�ed that each bundle Ai is non-overlapping. This
completes the proof. ⇤

We are now ready to prove that a proportional complete multi-
allocation exists for any n =m whenm is a product of some power
of 2 and 3. In essence, the existence of a majority switching point,
as proved in Lemma 3.2, allows us to divide the problem into two
instances. We will repeat this procedure until the number of layers
of the subproblem becomes either 2 or 3, for which we know the
existence of a proportional, feasible multi-allocation by Theorem
4.1 and Theorem 5.1.

T������ 5.5. A proportional complete multi-allocation that is
feasible exists for any numberm of layers and any number n =m of
agents wherem = 2a3b for some a 2 Z+ and b 2 {0, 1}.

P����. We design the following recursive algorithm D that
takes a subsetN 0 of agents with |N 0 | � 2, a |L0 |-layered cakeC0, and
a valuation pro�le (Vi )i 2N 0 , and returns a proportional complete
multi-allocation of the cake to the agents which is feasible. Suppose
thatm = n. Ifm = n = 1, then we allocate the entire cake to the
single agent. Ifm = n = 2, we run the cut-and-choose algorithm
as described in the proof of Theorem 4.1. Ifm = n = 3, we run the
procedure as described in the proof of Theorem 5.1. Now consider
the case whenm = n = 2a3b for some integers a � 1 and b 2 {0, 1}.
Then the algorithm �nds a majority switching point x over C0. We
letI1 = LR(x) andI2 = RL(x). By de�nition of a majority switching
point and the fact that n is even, we can partition the set of agents
N 0 into N1 and N2 where N1 is the set of agents who weakly prefer
I1 to I2, N2 be the set of agents who weakly prefer I2 to I1, and

|Nk | = |N 0 |
2 for each k = 1, 2. We apply D to the merge of Ik with

the agent set Nk for each k = 1, 2, respectively.
Wewill prove by induction onm that the completemulti-allocation

A returned byD satis�es proportionality as well as feasibility. This
is clearly true whenm = n = 2 due to Lemma 2.1 and Theorem
4.1. The claim also holds form = n = 3, due to Theorem 5.1. Sup-
pose that the claim holds form = n = 2a3b with 1  a  k � 1;
we will prove it for a = k . Suppose that the algorithm divides the
input cake C0 via a majority switching point x into I1 = LR(x)
and I2 = RL(x). Suppose that (N1,N2) is a partition of the agents
where N1 is the set of agents who weakly prefer I1 to I2, N2 is the
set of agents who weakly prefer I2 to I1, and |Nk | = |N 0 |

2 for each
k = 1, 2. Observe that each agent i 2 N1 weakly prefers I1 to I2
and thus Vi (I1) � 1

2Vi (C0). Similarly, Vi (I2) � 1
2Vi (C0) for each

i 2 N2. Thus, by the induction hypothesis, each agent i has value
at least 1

|N 0 |Vi (C
0) for its allocated piece Ai . By Corollary 5.3, the

feasibility of A is immediate. ⇤

It remains openwhether a proportional contiguousmulti-allocation
exists when the number of layers is three. A part of the reason is
that our algorithm for �nding an equitable multi-allocation (Lemma
5.4) may not return a ‘balanced’ partition: The number of pieces
contained in each layered piece may not be the same when the
number of layers is odd. For example, one layered piece may con-
tain pieces from three di�erent layers while the other two parts
may contain pieces from two di�erent layers, as depicted in Figure
5. However, we are able to avoid this problem when the number
of layers is a power of two: Indeed, in such cases, proportionality,
contiguity, and feasibility are compatible with each other.

T������ 5.6. A proportional complete multi-allocation that is
feasible and contiguous exists for any numberm of layers and any
number n =m of agents wherem = 2a for some a 2 Z+.

We will generalize the above theorems to the case when the
number of agents is strictly greater than the number of layers.
Intuitively, when n > m, then there is at least one layer whose
sub-piece can be ‘safely’ allocated to some agent without violating
the non-overlapping constraint.

T������ 5.7. A proportional complete multi-allocation that is
feasible exists for any numberm of layers and any number n � m of
agents wherem = 2a3b for some a 2 Z+ and b 2 {0, 1}.

P����. We design the following recursive algorithm D that
takes a subset N 0 of agents with |N 0 | � 2, a |L0 |-layered cake
C0, and a valuation pro�le (Vi )i 2N 0 , and returns a proportional
complete multi-allocation of the layered cake to the agents which
is feasible. For n = m, we apply the algorithm described in the
proof of Theorem 5.5. Suppose that n > m. The algorithm �rst
identi�es a layer Cj whose entire valuation is at least 1

n for some
agent; assume w.l.o.g. that j = 1. We move a knife from left to
right over the top cake C1 until some agent i shouts, i.e., agent i
�nds the left contiguous piece Y at least as highly valued as his
proportional fair share 1

n . The algorithm D then gives the piece to
the shouter. To decide on the allocation of the remaining items, we
apply D to the reduced instance (N 0 \ {i}, (C 0

j )j 2L, (Vi0)i0 2N 0\{i })
where C 0

j = Cj \ Y for j = 1 and C 0
j = Cj for j , 1. One can prove
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by induction on |N 0 | that the multi-allocation A returned by D
satis�es proportionality as well as feasibility.

We will prove by induction on |N 0 | that the complete multi-
allocation A = (A1,A2, . . . ,An ) returned by D satis�es propor-
tionality as well as feasibility. This is clearly true whenm = |N 0 |,
due to Theorem 5.5. Suppose that the claim holds for |N 0 | with
m  |N 0 |  k � 1; we will prove it for |N 0 | = k . Suppose agent i is
the shouter who gets the left contiguous piece Y . Clearly, agent i
receives her proportional share under A. Observe that all remain-
ing agents have the value at least |N 0 |�1

|N 0 | Vi (C
0) for the remaining

cake. Thus, by the induction hypothesis, each agent i 0 , i has value
at least 1

|N 0 |Vi (C
0) for its allocated piece Ai0 . This completes the

proof. ⇤

T������ 5.8. A proportional complete multi-allocation that is
feasible and contiguous exists for any numberm of layers and any
number n � m of agents wherem = 2a for some a 2 Z+.

6 DISCUSSION
We provided protocols that �nd an envy-free multi-allocation of a
two-layered cake for two or three agents with at most two types
of preferences. An obvious question is whether such allocation
also exists for any number n of agents over am layered cake when
n � m. One might expect that the Simmon-Su’s technique [20]
using Sperner’s Lemma can be adopted to our setting by consider-
ing all possible diagonal pieces. However, this approach may not
work because multi-layered cake-cutting necessarily exhibits non-
monotonicity in that the value of a pair of diagonal pieces may
decrease when the knife moves from left to right.

For the case when the contiguity constraint is relaxed, one can
show the existence of an envy-free feasible multi-allocation, when
each density function �i j is continuous andm  n: We can reduce
the problem to �nding a "perfect" allocation of a one-layered cake.
We will defer the formal proof to the full version of the paper.

With respect to proportionality, one intriguing future direction is
extending our positive algorithmic results to anym, which requires
careful consideration of contiguity and feasibility, which are often
at odds with completeness. Lastly, the compatibility of the fairness
notions with a more demanding e�ciency requirement of Pareto
optimality, and studying its query complexity is open in the multi-
layered cake-cutting problem.
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