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Abstract. We study the two-sided matching problem with regional quo-
tas, motivated by the Japanese hospital-doctor matching market in which
hospitals are associated with regions and both hospitals and regions are
subject to quotas. In order to achieve a balanced distribution of doc-
tors across regions, hard bounds are imposed by the government to limit
the number of doctors that can be placed at each region. However, such
hard bounds lead to inefficiency in terms of wasting vacant positions. In
this paper, we introduce a novel approach to solve this issue by assign-
ing weights to hospitals. And we propose a novel class of Generalized
Deferred Acceptance with Regions (GDA-R) algorithms that deals with
regional quotas and weights. We also consider the connection between
matching with regional quotas and matching with diversity constraints
studied in the context of school choice. We show how to convert one in-
stance of matching with soft diversity constraints into a corresponding
instance of matching with hard regional quotas such that feasibility and
stability are preserved. This connection implies our GDA-R algorithm
also applies to another important field in matching.

1 Introduction

Distributional constraints are pervasive in real-life matching markets. In this
growing literature [Goto et al., 2015, 2016, 2017], there are at least two streams
of work. The first one is hospital-doctor matching with regional quotas, moti-
vated by the Japanese Residency Matching Program [Kamada and Kojima, 2015,
2017]. And the second one is school choice with diversity constraints, studied in-
tensely in the controlled school choice problem [Abdulkadiroğlu and Sönmez,
2003; Echenique and Yenmez, 2015].

The Japanese residency matching program (JRMP) was established in 2004
to train newly graduated medical students at hospitals. In 2019, 8986 doctors
were matched to 1037 hospitals under the JRMP system.4 Due to the shortage of
doctors distributed to rural areas, the Japanese government introduced regional
quotas to limit the number of doctors that can be placed at different regions
since 2008. To ensure that the number of doctors matched to a region does not

4 https://www.mhlw.go.jp/stf/houdou/0000171153_00003.html
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exceed its regional quota, the Japanese government also imposes a target capacity
on each hospital which is usually smaller than its real capacity.5 However, such
hard target capacities lead to a waste of vacant positions [Kamada and Kojima,
2015]. In this paper, our first research question is how to eliminate the waste of
vacant positions with minimal modifications to the current system?

In the problem of school choice with diversity constraints, each student is
associated with a set of types that capture traits such as being from a dis-
advantaged group. To achieve a balanced integration of students from diverse
backgrounds, each school typically imposes a maximum quota and minimum
quota on each type [Kojima, 2012; Hafalir et al., 2013; Kominers and Sönmez,
2013]. If diversity constraints are viewed as rigid bounds, then there may not
exist any outcome that fulfills all type-specific minimum quotas, and it is also
impossible to design a mechanism that satisfies desirable properties such as fair-
ness and non-wastefulness [Ehlers et al., 2014]. Recent literature treats diversity
constraints as soft diversity constraints such that a school may admit more stu-
dents of some type than its maximum quota or fewer students of some type than
its minimum quota [Kurata et al., 2015, 2017; Gonczarowski et al., 2019].

In a recent paper, Aziz et al. [2019] showed how to transform an instance
with hard diversity quotas into a corresponding instance with hard regional
quotas. If we apply their reduction directly, then soft diversity constraints are
converted into soft regional quotas. And our second research question is the
following one: what is the connection between soft diversity constraints and hard
regional quotas?

Contributions The contributions of this paper are summarized as follows. First,
we come up with a novel approach to solve the inefficiency issue in the JRMP
market by assigning weights to hospitals. Different from the previous solution by
Kamada and Kojima [2015] that still yields a wasteful outcome and requires a
specific ordering over hospitals such that hospitals could pick doctors in a round-
robin manner, we make minimal modifications to the current system. Second,
we propose a novel class of Generalized Deferred Acceptance with Regions algo-
rithms (GDA-R) that deals with regional quotas and weights over hospitals. The
class of GDA-R algorithms not only is a generalization of previous algorithms,
but also introduces a new framework for matching with regional quotas based
on a novel two-stage process such that contracts proposed by doctors are first
shortlisted by hospitals and then further refined by regions. Third, we are the
first to show how to convert an instance of matching with soft diversity con-
straints into a corresponding instance of matching with hard regional quotas
such that feasibility and stability are preserved. This connection not only unifies
the literature but also implies that our GDA-R algorithms also work for another
important field in the two-sided matching.

Related Work Kamada and Kojima [2015] first studied the inefficiency issue6 in
the JRMP market and they proposed a flexible deferred acceptance algorithm

5 https://www.mhlw.go.jp/seisaku/2009/08/04.html
6 Note that Kamada and Kojima [2015] formally define efficiency as Pareto efficiency,

while we consider efficiency with respect to wastefulness.
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which does not eliminate the waste of vacant positions. There are other algo-
rithms proposed for matching with regional quotas [Goto et al., 2015, 2016, 2017;
Hamada et al., 2017] that work for one particular setting. We propose a novel
class of Generalized Deferred Acceptance with Regions algorithms (GDA-R) that
provide a new framework for matching with regions.

There are other papers that are more mathematical which consider an ab-
stract and general class of constraints, e.g., constraints that can be represented
as a substitute choice function [Hatfield and Milgrom, 2005; Hatfield and Ko-
jima, 2008], an M-convex set [Kojima et al., 2018]. Although representing these
two models in an abstract model is possible, but how to encode such constraints
and preferences as a choice function in an abstract model is not obvious/trivial
and deserves further exploration.

2 Matching with Regional Quotas

In this section, we introduce a new model of matching with regional quotas that
incorporates weights over hospitals. We choose the classical hospital-doctor set-
ting for illustration, while our model applies to many matching markets outside
the context of hospital-doctor matching. For instance, a university may want
to achieve a balance of newly enrolled students across different departments
where the university can be considered as a region, and different departments
are considered as hospitals within the region.

An instance I R of matching with regional quotas is composed of a tuple (D,
H, qH , R, δ, Y , %D, %H , %R, W ). Let D and H denote the set of doctors and
the set of hospitals, respectively. A capacity vector qH = (qh)h∈H consists of
each hospital h’s capacity qh, which is the maximum number of doctors that
hospital h can accommodate.

There is a set of regions R where each region r ∈ R is a subset of hospitals,
i.e. r ⊆ H. We assume all hospitals are partitioned into disjoint regions as in
the Japanese hospital-doctor matching market [Kamada and Kojima, 2015] s.t.,
for any two ri, rj ∈ R, either ri = rj or ri ∩ rj = ∅. Let δ = (δr)r∈R denote a
vector consisting of each region’s maximum quota δr which limits the number
of doctors that can be distributed to all hospitals within region r.

Each contract (d, h) is a doctor-hospital pair denoting that doctor d is matched
with hospital h. Let Y ⊆ D × H be the set of available contracts. An out-
come (or a matching) is a set of contracts Y ⊆ Y. For any outcome Y ⊆ Y,
let Yd = {(d, h) ∈ Y |h ∈ H} denote the set of contracts involving doctor d,
Yh = {(d, h) ∈ Y |d ∈ D} denote the set of contracts involving hospital h, and
Yr =

⋃
h∈r Yh denote the set of contracts involving region r.

Let %D= {%d}d∈D be the preference profile of all doctors. Each doctor d
has a preference ordering %d over Yd ∪ {∅} where ∅ denotes the null contract
indicating that doctor d is unmatched. For any two contracts x, y ∈ Yd ∪ {∅},
x %d y means that doctor d prefers contract x to contract y or doctor d is indif-
ferent between two contracts, where �d and ∼d denote the strict and indifferent
relation, respectively.
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Each hospital h has a priority ordering %h over Yh ∪ {∅} and each region r
has a regional priority ordering %r over Yr ∪ {∅}. Let %H= {%h}h∈H and %R=
{%r}r∈R denote the priority profile of hospitals H and regions R, respectively.
Note that contracts allow us to describe more complicated regional priorities
over doctor-hospital pairs instead of doctors.

A contract (d, h) ∈ Y is acceptable to doctor d and hospital h if (d, h) %d ∅
and (d, h) %h ∅ hold. W.L.O.G, we assume that for any h ∈ r, if a contract
y ∈ Yh is acceptable to hospital h, then it is also acceptable to region r.

An outcome Y ⊆ Y is feasible for IR under regional quotas if i) for each
doctor d, we have |Yd| ≤ 1, ii) for each hospital h, |Yh| ≤ qh holds, and iii) the
outcome Y respects regional quotas, i.e., for any region r we have |Yr| ≤ δr.

Definition 1 (Non-wastefulness). Given a feasible outcome X, a doctor d
claims an empty seat at hospital h if (d, h) /∈ X and X ∪{(d, h)}\Xd is feasible.
A feasible outcome is non-wasteful if no doctor claims an empty seat.

The main difference from the previous model is that each region r additionally
assigns a weight w(h) to each hospital h ∈ r to specify the importance of hospital
h to region r. Let W = {w(h)}h∈H denote the set of weights. The intuition of
weights over hospitals is that, when there are more doctors applying to hospitals
at region r than its regional quota δr, region r gives higher precedence to the
hospitals with a larger weight and lower precedence to the hospitals with a
smaller weight. If ties occur, then region r chooses the contract with higher
regional priority based on �r.

2.1 Inefficiency in Japanese Market

In this subsection, we show how the addition of weights over hospitals provides
a suitable way to solve the inefficiency issue in the Japanese hospital-doctor
matching market with minimal modification of the current system. To ensure
that the number of doctors matched to one region does not exceed the regional
quota, the Japanese government also imposes a target capacity qh on each hospi-
tal, i.e.,

∑
h∈r qh ≤ δr [Kamada and Kojima, 2015]. However, such hard target

capacities lead to the waste of vacant positions as Example 1 shows.

Example 1. Consider one region r with regional quota δr = 12 that contains
two hospitals h1 and h2 with capacity qh1

= 6 and qh2
= 10, respectively.

Suppose the target capacity of each hospital is qh1
= 4 and qh2

= 8. There are
12 doctors D = {d1, ..., d12} in which the first 6 doctors prefers hospital h1 to
being unmatched and the latter 6 prefers hospital h2 to being unmatched, i.e,
for i ∈ [1, 6], (h1, di) �di

∅ and for j ∈ [7, 12], (h2, dj) �dj
∅.

Each doctor could be matched to his favorite hospital without violating
the regional maximum quota. However, two doctors from {d1, ..., d6} cannot
be matched to hospital h1 due to the target capacity qh1

= 4.
In our setting, we can divide the virtual hospital h1 into two dummy hospitals

h11, h
2
1 where h11 admits doctors up to the target capacity with qh1

1
= qh1

= 4 and

h21 admits doctors after reaching the target capacity with qh2
1

= qh1
− qh1

= 2.
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Similarly, hospital h2 is divided into h12 and h22 with qh1
2

= 8 and qh2
2

= 2. Region

r gives larger weight to hospital h11 and h12, and smaller weight to hospital h21
and h22. Then all doctors could be matched to their favorite hospitals without
exceeding any hospital capacity.

In our approach, the only modification to the system is to treat the target
capacity as soft bound so that doctors can still be assigned to some hospital
when the target capacity is reached. Each hospital is divided into two dummy
hospitals where one dummy hospital has a target capacity and the other one
has the remaining capacity. Each region gives higher precedence to all dummy
hospitals with target capacity by assigning a larger weight and lower precedence
to all dummy hospitals with remaining capacity by assigning a smaller weight.

This slight modification provides the government ability to distribute doctors
to underserved regions as the target quotas while eliminating the waste of vacant
positions. We can also apply this idea to other matching markets, in which the
agents who play the role of regions have the authority to interfere in the process
of matching.

3 Generalized Deferred Acceptance with Regions

In this section, we propose a novel class of Generalized Deferred Acceptance with
Regions algorithms (GDA-R) that deals with regional priorities and weights. Our
algorithm is based on a novel two-stage process such that contracts proposed by
doctors are first shortlisted by hospitals and then further refined by regions. We
not only come up with a novel and general algorithm but also introduce a new
framework for matching with regions.

The intuition is that regions assign weights to hospitals to quantify the im-
portance in terms of achieving a balanced outcome and hospitals first choose
doctors based on their own priority ordering. When the number of applicants
exceeds the regional quota, region determines which doctors should be selected
in a reasonable way that it fills the vacant positions at the hospitals with larger
weights whenever possible.

3.1 GDA-R

We illustrate the framework of Generalized Deferred Acceptance with Regions
(GDA-R) at a high level. Firstly each doctor selects his favorite contract involv-
ing the hospital that has not rejected him yet. Then each hospital selects a set of
contracts among all proposals from doctors without exceeding its capacity. Next,
each region chooses a set of contracts among the set of contracts selected by each
hospital within the region without exceeding its regional quotas. All contracts
that are not chosen by regions are rejected. Repeat this procedure until no more
contracts are rejected.

Given a set of contracts Y , let Chd(Y ) denote the choice function of doctor
d which selects his most preferred acceptable contract from Yd. Both the choice
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function Chh(Y ) of hospital h and the choice function Chr(Y ) of region r select
a set of contracts. We extend the choice function of each individual agent to a
set of agents by taking the union, i.e., ChD(Y ) =

⋃
d∈D Chd(Y ). Armed with

these choice functions, we describe the GDA-R algorithm in Algorithm 1.

Input: IR, ChD, ChH , ChR, a set of contracts Y
Output: An outcome Z ⊆ Y
1: Re← ∅, A← Y,B ← ∅, Z ← ∅
2: while A 6= Z do
3: A← ChD(Y \Re), B ← ChH(A), Z ← ChR(B)
4: Re← Re ∪ (Z \A)
5: return Z

Algorithm 1: Generalized Deferred Acceptance with Regions
Next, we present one particular way to define Chh(Y ) and Chr(Y ) as shown

in Algorithm 2 and Algorithm 3, respectively. Note that it is not unique to define
the choice functions Chh(Y ) and Chr(Y ), and each different method specifies
one particular algorithm of GDA-R.

Input: An instance IR, a set of contracts Y
Output: A set of contracts Y ′ ⊆ Y
1: Y ′ ← ∅ % remove unacceptable contracts from Yh

2: for y = (d, h) ∈ Y in descending ordering of �h do % Ties are broken to derive a
strict priority ordering �h

3: if |Y ′
h| < qh then

4: Y ′ ← Y ′ ∪ {y}
5: return Y ′

Algorithm 2: Choice function Chh of hospital h
The choice function Chh in Algorithm 2 works as follows: each hospital selects

contracts one by one in accordance with its priority ordering �h until the number
of contracts reaches its capacity qh.

The choice function Chr of region r in Algorithm 3 works as follows: First
divide all contracts Yr = Y 1

r ∪ Y 2
r ... ∪ Y k

r into disjoint groups based on the
weights over hospitals s.t. for any two contracts (d, h) ∈ Y a

r , (d
′, h′) ∈ Y b

r , i)
if two hospitals have the same weight, then two contracts belong to the same
group; ii) if hospital h has higher weight than hospital h′, then hospital h belongs
to the group with smaller index a. Region r selects contracts from group Y 1

r first,
and then Y 2

r and so on. For each group Y a
r , region r selects contracts based on

its regional priority �r without exceeding its regional quota.

3.2 Stability

In this subsection, we propose a new stability concept for matching with regional
priorities and weights.

Given a feasible outcome Y and a contract y = (d, h) /∈ Y , we use a function
α(Yr, y) to quantify the importance of the contract y to region r with h ∈ r,

α(Yr, y) =

{
w(h) if |Yh| < qh

−∞ otherwise
(1)
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Input: An instance IR, a set of contracts Y
Output: A set of contracts Z ⊆ Y
1: Z ← ∅ % remove unacceptable contracts from Yr

2: Let Yr = Y 1
r ∪ ... ∪ Y k

r s.t. ∀(d, h) ∈ Y a
r , ∀(d′, h′) ∈ Y b

r

– w(h) = w(h′)⇒ a = b
– w(h) > w(h′)⇒ a < b

3: for each Y a
r ∈ Yr, a ∈ [1, · · · , k] do

4: for y = (d, h) ∈ Y a
r in descending ordering of �r do % Ties are broken to

derive a strict ordering �r

5: if |Zr| < δr then
6: Z ← Z ∪ {y}
7: return Z

Algorithm 3: Choice function Chr of region r

The function α(Yr, y) returns the weight of hospital h when the hospital still
has a vacant position, and returns negative infinity otherwise. Given a feasible
outcome Y and two contracts y = (d, h) /∈ Y, y′ = (d′, h′) /∈ Y with h, h′ ∈ r, we
use a function β(Yr, y, y

′) to compare the weights.

β(Yr, y, y
′) = α(Yr, y)− α(Yr, y

′) (2)

Definition 2 (Stability). Given a feasible outcome Y , a doctor d and a hos-
pital h form a blocking pair if y = (d, h) /∈ Y , y �d Yd and one of the two
conditions holds: either i) the outcome Y ∪{y} \Yd is feasible; or ii) there exists
a contract y′ = (d′, h′) ∈ Y s.t. h ∈ r, h′ ∈ r and for the outcome Y ′ = Y \ {y′},
one of the following cases holds,

– ii-a) h = h′, y �h y
′ and y �r y

′;
– ii-b) h 6= h′ and β(Y ′

r , y, y
′) > 0;

– ii-c) h 6= h′, β(Y ′
r , y, y

′) = 0 and y �r y
′.

A feasible outcome is stable if there is no blocking pair.

Note that condition i) corresponds to non-wastefulness in Definition 1. Def-
inition 2 states that given an outcome Y , a doctor d and a hospital h form a
blocking pair if doctor d is not matched to hospital h, while doctor d prefers
hospital h to his assignment and either i) moving doctor d to hospital h does not
violate the feasibility requirement including hospital h’s capacity and region r’s
regional quota, or ii) there exists another doctor d′ who is matched to hospital
h′ at region r such that ii-a) hospital h and h′ are the same, and both hospital h
and region r prefer the contract y to y′; ii-b) hospital h has a larger weight than
hospital h′, or ii-c) hospital h and h′ are different but with the same weight, and
region r prefers the contract y to y′.

Theorem 1. The GDA-R algorithm with choice functions chh and chr defined
in Algorithm 2 and 3 yields a stable outcome.
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Proof. We prove Theorem 1 by contradiction. Let Y be the yielded by the GDA-
R algorithm and suppose there exists a blocking pair (d, h) where h ∈ r.

Case i) If the outcome Y ∪ (d, h) \ Yd is feasible, then both hospital h and

region r have not filled its capacity or maximum quota in the outcome Y . Since
doctor d prefers (d, h) to Yd, he must have selected the contract (d, h) before
choosing Yd and the contract (d, h) was rejected by either hospital h or region r.
However, whenever a contract is rejected, either the number of contracts reaches
the capacity of hospital h or the quota of region r, a contradiction.

Case ii) Suppose there exist another contract (d′, h′) ∈ Y with h′ ∈ r. Let

Y ′ = Y \ (d′, h′). Note that when (d, h) was rejected, the number of contracts
chosen by region r has already reached its maximum quota. If ii-a) h = h′

holds, then all contracts matched to hospital h must have higher hospital priority
than h, a contradiction. If ii-b) h 6= h′ and β(Y ′

r , (d, h), (d′, h′)) > 0 hold, then
hospital h has a larger weight than hospital h′. This leads to a contraction that
region r selects one contract involving hospital h′ with smaller weight before
filling all vacancies at hospital h. If ii-c) h 6= h′, β(Y ′

r , (d, h), (d′, h′)) = 0 and
(d, h) �r (d′, h′) hold, then both hospitals have the same weight to region r, but
the contract (d, h) has higher regional priority. By the time contract (d, h) was
rejected, for each contract (d′′, h′′) that is selected by region r, either h′′ has a
larger weight than h or contract (d′′, h′′) has higher regional priority. This leads
to a contraction that region r selects the contract (d′, h′) that does not satisfy
any of the two conditions.

3.3 Comparison with Previous Algorithms

Kamada and Kojima [2015] proposed flexible deferred acceptance (FDA) for
the Japanese residency matching which does not yield a non-wasteful outcome.
The FDA algorithm requires a specific ordering over hospitals such that hospitals
could pick doctors in a round-robin manner when the number of doctors matched
to some hospital has reached the target capacity.

The FDA algorithm is a very special implementation of GDA-R algorithm.
We can divide each hospital into multiple dummy hospitals where one dummy
has target capacity, and all the others have capacity 1. For all the dummy hos-
pitals with target capacity, they are assigned the largest weight. For the rest of
dummy hospitals, each of them has a different weight which is in accordance
with the order of round-robin.

There are other algorithms proposed for matching with regional quotas [Goto
et al., 2015, 2016, 2017; Hamada et al., 2017] which requires a master list over
doctors. The role of the master list is equivalent to imposing a unified regional
priority ordering on all regions. And these algorithms are also particular imple-
ments of the GDA-R algorithm in which all hospitals have the same weight and
all regions have the same regional priority orderings.
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4 Transformation from Soft Diversity Constraints to
Hard Regional Quotas

In this section, we discuss the connection between matching with soft diversity
constraints and matching with hard regional quotas. Different from previous
work [Aziz et al., 2019], we show how to transform an instance of matching with
soft diversity constraints into a corresponding instance of matching with hard
regional quotas.

4.1 Soft Diversity Constraints

In this subsection, we first describe the model of matching with soft diversity
constraints. To distinguish from the setting of matching with regional quotas,
we choose school choice for illustration.

An instance IT of matching with soft diversity constraints is composed of
a tuple (S,C, qC , T, η, η,X ,%S ,%C). There is a set of students S and a set of
schools C. A capacity vector qC = (qc)c∈C consists of each school c’s capacity
qc. Let T denote the type space and T (s) represent the set of types to which
student s belongs. We followed the setting of [Ehlers et al., 2014] in which each
student is associated with one type, i.e., |T (s)| = 1.

Each school c imposes a minimum quota ηt
c

and a maximum quota ηtc on each

type t. Let η
c

= (ηt
c
)t∈T be a vector consisting of all minimum quotas at school

c and let η denote a matrix of all minimum vectors of all schools. Similarly, let
η denote the matrix consisting of all schools’ type-specific maximum quotas.

Each contract x = (s, c) is a student-school pair denoting that student s is
matched with school c. An outcome (or a matching) is a set of contracts. Let
X ⊆ S×C denote the set of available contracts. Given any X ⊆ X , let Xs denote
the set of contracts involving student s, Xc denote the set of contracts involving
school c and Xc,t denote the set of contracts involving type t and school c.

The preference profile of all students is denoted as %S= {%s1 , ...,%sn}, where
each student s has a preference ordering %s over Xs∪{∅}. Let %C= {%c1 , ...,%cm

} denote the priority profile of all schools, where each school c has a priority
ordering %c over Xc ∪ {∅}.

An outcome X is feasible for IT if i) each student s is matched to at most
one school, i.e., |Xs| ≤ 1, and ii) each school c admits at most qc students, i.e.,
|Xc| ≤ qc. Note that we consider soft diversity constraints such that in a feasible
outcome, a school may admit more students of type t than its maximum quota
ηtc or fewer students of type t than its minimum quota ηt

c
.

A contract (s, c) is acceptable if (s, c) %s ∅ and (s, c) %c ∅ hold. A feasible
outcome X is individually rational if each contract (s, c) ∈ X is acceptable.
Without loss of generality, we focus on individually rational outcomes only.

Next, we introduce two important properties that are intensely studied in
the context of school choice. The first property is called non-wastefulness, that
requires that a feasible outcome should make efficient use of vacant school seats.
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Definition 3 (Non-wastefulness). Given a feasible outcome X, student s
claims an empty seat of school c if (s, c) �s Xs and |Xc| < qc. A feasible outcome
is non-wasteful if no student claims an empty seat.

Ehlers et al. [2014] proposed a fairness concept in Definition 4 for soft diver-
sity constraints that captures a natural idea called dynamic priorities: Schools
give higher precedence to students whose types have not met the minimum
quotas, medium precedence to students whose types have filled the minimum
quotas, but not the maximum quotas, and lower precedence to students whose
types have reached the maximum quotas7.

Definition 4 (Fairness). Given an instance IT and a feasible outcome X, a
student s of type t has EHYY-justified-envy towards another student s′ of type
t′ if (s, c) �s Xs, (s′, c) ∈ X and either i) t = t′ and (s, c) �c (s′, c), or ii) t 6= t′

and one of the following cases holds,

– (a) |Xc,t| < ηt
c
, |Xc,t′ | ≤ ηt

′

c
and (s, c) �c (s, c′);

– (b) |Xc,t| < ηt
c

and |Xc,t′ | > ηt
′

c
;

– (c) ηt
c
≤ |Xc,t| < ηtc, ηt

′

c
< |Xc,t′ | ≤ ηt

′

c and (s, c) �c (s, c′);

– (d) ηt
c
≤ |Xc,t| < ηtc, |Xc,t′ | ≥ ηt

′

c ;

– (e) |Xc,t| ≥ ηtc, |Xc,t′ | > ηt
′

c and (s, c) �c (s, c′).

An outcome is EHYY-fair if no student has EHYY-justified-envy towards an-
other student.

4.2 Comparison with the Previous Reduction

A recent paper [Aziz et al., 2019] studied the connection between hard diversity
constraints and hard regional quotas. If we apply their reduction directly, then
soft diversity constraints are converted into soft regional quotas instead of hard
regional quotas. Next, we informally describe our transformation and explain
the difference from the previous reduction through Example 2.

Example 2. Consider one school c with capacity qc = 10 and soft maximum
quota ηt = 6 of type t. In the reduction of [Aziz et al., 2019], we create one
region r corresponding to school c with regional quota δr = 10 and one hospital
h corresponding to type t with capacity qh = 10. Then create one more region
r1 that contains hospital h only with soft regional quota 6. This is because
school c could admit more than 6 students of type t without violating feasibility
requirement. Thus in the reduction by Aziz et al. [2019], soft diversity constraints
are converted into soft regional quotas.

Under our reduction, we create two hospitals h1, h2 for type t where hospital
h1 has capacity qh1 = 6 corresponding to the soft maximum quota ηt and hospital
h2 has capacity qh2

= qc − ηt = 4 corresponding to the remaining capacity after

7 To distinguish with the priority order of schools over contracts, we refer to the
dynamic priorities over student types as precedence.
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reaching the soft maximum quota. And region r gives larger weight to hospital
h1 and smaller weight to hospital h2. Each hospital can be considered as a
region that contains itself. Then soft diversity constraints are converted into
hard regional quotas.

Next, we proceed to the formal reduction from an instance IT of matching
with soft diversity constraints into to a corresponding instance IR of matching
with regional quotas. And we show how non-wastefulness and fairness in the
former setting are preserved as stability in the latter setting.

For each student si ∈ S, create a corresponding doctor di. Let D =
⋃

si∈S di
denote the set of doctors. For each school cj ∈ C and each type t ∈ T , create
three hospitals h1c,t, h

2
c,t and h3c,t with capacity ηt

cj
, ηtcj − ηt

cj
and qcj − ηt

cj
,

respectively. Assign weights to each induced hospital as follows: w(h1c,t) = 3,
w(h2c,t) = 2 and w(h3c,t) = 1. Let Hj,t = {h1c,t, h2c,t, h3c,t} be the set of hospitals
induced from school cj for type t.

Intuitively, hospitals h1c,t corresponds to the case that minimum quota ηt
cj

has not reached yet, hospital h2c,t corresponds to the case that the minimum
quota has reached but not the maximum quota, and hospital h3c,t corresponds
to the remaining capacity after reaching the maximum quota ηtcj .

For each school cj ∈ C, create one region rj that contains all induced hos-
pitals Hj =

⋃
t∈T Hj,t from school cj . The regional maximum quota of region

rj is the capacity qcj of school cj . Let R =
⋃

cj∈C rj be the set of regions. For

each contract x = (si, cj) ∈ X with T (si) = t, create 3 contracts y1i,j = (di, h
1
j,t),

y2i,j = (di, h
2
j,t), y

3
i,j = (di, h

3
j,t) involving each induced hospital hkj,t for k ∈ [1, 3].

For each doctor di ∈ D, given any two contracts yoi,j = (di, h
o
j,t) and yo

′

i,j′ =

(di, h
o′

j′,t) involving doctor di, i) if j 6= j′, then doctor di’s preference over these
two contracts is consistent with student s’s preference over corresponding con-
tracts (si, cj) and (si, cj′); ii) if j = j′, doctor di is indifferent between two
contracts. For each hospital hij,t ∈ Hj induced from school cj , its priority or-
dering is consist with �cj of school cj . For each region rj induced from school
cj , given any two contracts (di, h), (di′ , h

′) ∈ Yrj , i) if di 6= di′ , then region rj ’s
priority over two contracts is consistent with priority ordering of school cj over
contracts (si, cj) and (s′i, cj); ii) if di = di′ , then region rj is indifferent between
two contracts.

Next, we show how to create a corresponding outcome Y for induced instance
IR from a feasible outcome X for IT . The general idea is that if student si is
matched to school cj , then doctor di is matched to region rj . For the set of doctors
who are matched to region rj and correspond to students of type t, region rj
assigns ηt

cj
doctors with highest regional priority to hospital h1j,t, assigns ηtcj−η

t
cj

doctors to hospital h2j,t with second highest regional priority and assigns qcj−ηtcj
doctors with lowest regional priority to hospital h3j,t.

Theorem 2. A feasible outcome X is fair and non-wasteful for IT with soft
diversity constraints if and only if the induced outcome Y is stable for the cor-
responding instance IR with regional quotas.
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Proof. First we prove that if the induced outcome Y is not stable for IR, then
the outcome X either admits justified envy or admits an empty seat. Suppose
a doctor d and a hospital h form a blocking pair with y = (d, h) /∈ Y . i) If
the outcome Y ∪ {(d, h)} \ {Yd} is feasible, then region r with h ∈ r has not
reached its regional maximum quota. In other words, school c corresponding to
region rstill has a vacant seat and student s corresponding to doctor d claims
an empty seat at school c. Thus the outcome X is wasteful. ii) If there exists
a contract y′ = (d′, h′) ∈ Y with h, h′ ∈ r and for the outcome Y ′ = Y \ {y′},
one of the three cases holds: ii-a) h = h′, y �h y

′ and y �r y
′, ii-b) h 6= h′ and

β(Y ′
r , y, y

′) > 0; or ii-c) h 6= h′, β(Y ′
r , y, y

′) = 0 and y �r y
′. Let students s and

s′ with type t and t′ correspond to doctors d and d′. Then either student s’s type
is more important than s′’s type or both types are tied in terms of importance
to school c, but the contract involving student s has higher school priority. Thus
for all cases ii-a, ii-b, ii-c, student s has justified envy towards student s′.

Next, we prove that if the outcome X is not fair or is wasteful, then the
induced outcome Y is not stable. i) If student s has justified envy towards
student s′, then either the type of student s is more important than the one of s′

or both types are tied in terms of importance, but the contract involving student
s has higher school priority. Then either hospital h has higher weight than h′, or
both hospitals have the same weight and contract y has higher regional priority.
ii) If the outcome X is wasteful, then doctor d can be placed at region r without
exceeding regional maximum quota. For both cases, doctor d and hospital h form
a blocking pair.

5 Conclusion

In this paper, we studied the two-sided matching problem with regional quo-
tas. We introduced a novel approach to solve the inefficiency issue in Japanese
residency matching by assigning weights to hospitals. We also proposed a novel
class of Generalized Deferred Acceptance with Regions (GDA-R) algorithms
that deals with regional quotas and weights. We established a connection be-
tween matching with soft diversity constraints and matching with hard regional
quotas. This connection implies our GDA-R algorithm also applies to another
important field in matching.

The GDA-R is a new framework for matching with regional quotas and there
are many directions to explore. For instance, what is a sufficient condition that
guarantees a stable outcome and guarantees that there is no incentive for doctors
to misreport their preferences?
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