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ABSTRACT
In this paper, we present new results on the fair and efficient allo-

cation of indivisible goods to agents with monotone, submodular,

non-additive valuation functions over bundles — a natural valuation

model for several real-world domains despite its simple structure.

We show that, if such a valuation function has binary marginal

gains, a utilitarian social welfare-maximizing allocation that also

achieves envy-freeness up to one item exists and is computationally

tractable; also, Nash welfare-maximizing and leximin allocations

(where no allocated bundle includes a ‘wasted’ item) are envy-free

up to one item as well. For a subclass of these valuation functions

based on maximum (unweighted) bipartite matching, we show that

leximin and MNW allocations coincide with minimizers of any

symmetric strictly convex function of agents’ valuations among

utilitarian optimal outcomes, and can also be computed in polyno-

mial time.

1 INTRODUCTION
How should a collection of goods be divided amongst a population

of agents with subjective valuations? Are there computationally

efficientmethods for finding good allocations? These questions have

been the focus of intense study in the CS/Econ community in recent

years. Several criteria of justice have been proposed in the litera-

ture. Some criteria focus on agent welfare: e.g. Pareto optimality,

a popular criterion of allocative efficiency, stipulates that there is

no other allocation that improves one agent’s valuation without

hurting another. Other criteria consider how agents perceive their

bundles as compared to others’ allocation; a key concept here is

one of envy: an agent envies another if she believes that her bundle

is worth less than that of another’s [16]. Envy-free (EF) allocations

that are also Pareto optimal (PO) or even complete (i.e. each item is

allocated to at least one agent) are not guaranteed to exist when the

items under consideration are indivisible: consider the case of two

agents and one valuable item — assigning the item to any one of

them results in envy by the other. This naturally leads to the notion

of envy-freeness up to one good (EF1) [11]: for every pair of agents i
and j , j’s bundle contains some item whose removal results in i not
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envying j; Lipton et al. [28] provide a polynomial-time algorithm

for computing a complete EF1 allocation. Of particular interest

are methods that simultaneously achieve several desiderata. When

agent valuations are additive, i.e. the value for a bundle is the sum

of the values for its individual items, Caragiannis et al. [12] show

that allocations that satisfy both envy-freeness up to one item and

Pareto optimality (PO) exist, specifically the ones that maximize

the product of agents’ utilities — also known as max Nash welfare

(MNW). Barman et al. [4, 5] show that an allocation with these

properties can be computed in (pseudo-)polynomial time. Indeed,

most work on the fair and efficient allocation of indivisible goods

has focused on the additive setting; at present, little is known in this

respect about other classes of valuation functions. This is where

our work comes in.

1.1 Our contributions
We focus on monotone submodular valuations with binary mar-

ginal gains that we refer to as (0, 1)-SUB valuations. This class

of valuations naturally arises in many practical applications. Sup-

pose that a government body wishes to fairly allocate public goods

to individuals of different minority groups (say, in accordance

with a diversity promoting policy). This could apply to the as-

signment of kindergarten slots to children from different neighbor-

hoods/socioeconomic classesor of flats in public housing estates to

applicants of different ethnicities [7]. A possible way of achieving

group fairness in this setting is to model each minority group as

an agent consisting of many individuals: each agent’s valuation

function is based on optimally matching items to its constituent

individuals – then, envy naturally captures the notion that no group

should believe that other groups were offered better bundles (this

is the fairness notion studied by Benabbou et al. [6]). Another pos-

sible domain is the assignment of courses to students [11]: each

student has a set of courses she would like to take, which fit her

schedule in a certain manner. Thus, a student’s valuation function

is induced by a maximal matching of courses to schedule slots.

Such assignment/matching-based valuations are non-additive in

general and, in fact, constitute a significant subclass of submodular

valuations called OXS valuations [27].

The binary marginal gains assumption is best understood in con-

text of matching-based valuations — in this scenario, it simply

means that individuals either approve or disapprove of items, and

do not distinguish among items they approve (we call OXS func-

tions with binary individual preferences (0, 1)-OXS valuations).

This is a reasonable assumption in kindergarten slot allocation (all

https://doi.org/doi
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approved/available slots are identical), and is implicitly made in

some public housing mechanisms (e.g. Singapore housing appli-

cants are required to effectively approve a subset of flats by selecting

a block).

In addition, imposing certain constraints on the underlying match-

ing problem retains the submodularity of the agents’ induced val-

uation functions: if there is a hard limit due to a budget or an

exogenous quota (e.g. ethnicity-based quotas in Singapore public

housing; socioeconomic status-based quotas in certain U.S. public

school admission systems) on the number of items each group is

able or allowed to receive, then agents’ valuations are truncated

matching-based valuations. Such valuation functions are not OXS,

but still submodular. Our results apply to this broader class, as

agents still have binary/dichotomous preferences over items. For

(0, 1)-SUB valuations, we establish the following existential and

computational results on the compatibility of (approximate) envy-

freeness with welfare-based allocation concepts.

(a) For (0, 1)-SUB valuations, we show that an EF1 allocation that

also maximizes the utilitarian social welfare or USW (hence is
Pareto optimal) always exists and can be computed in polyno-

mial time.

(b) For (0, 1)-SUB valuations, we show that leximin
1
and MNW

allocations both possess the EF1 property.

(c) For (0, 1)-SUB valuations, we provide a characterization of the

leximin allocations; we show that they are identical to the min-

imizers of any symmetric strictly convex function over utilitar-

ian optimal allocations. We obtain the same characterization

for MNW allocations.

(d) For (0, 1)-OXS valuations, we show that both leximin andMNW

allocations can be computed efficiently.

Our computational results are summarized in Table 1.

Result (a) is remarkably positive: the EF1 and utilitarian welfare ob-

jectives are incompatible in general, even for additive valuations.
2

In fact, maximizing the utilitarian social welfare among all EF1

allocations is NP-hard for general valuations [3]. Such strong wel-

fare/fairness guarantees are not known even for simple classes such

as binary additive valuations (i.e. the value of a subset of items is

the sum of the values of individual items which are, in turn, valued

at either 0 or 1 each), which are subsumed by the (0, 1)-SUB class.

Result (b) is reminiscent of the main theorem in Caragiannis et al.

[12], showing that any MNW allocation is PO and EF1 under additive

valuations; they also showed that a PO and EF1 allocation may

not exist under subadditive/supermodular valuations (Theorem 3.3)

and MNW does not imply EF1 for arbitrary, real-valued submodu-

lar functions but left the PO+EF1 existence question open for the

submodular class. The open questions in this paper have received

substantial attention in recent literature (for instance, progress has

been made on EFX or envy-freeness up to the least valued item,

see e.g. [32]) but the PO+EF1 existence issue beyond additive val-

uations is yet to be settled. To our knowledge, (0, 1)-SUB is the

first valuation class not subsumed by additive valuations for which

1
Roughly speaking, a leximin allocation is one that maximizes the realized valuation

of the worst-off agent and, subject to that, maximizes that of the second worst-off

agent, and so on.

2
Consider 3 items and 2 agents Alice and Bob with (additive) valuations 1/4, 3/8, 3/8

and 0, 1/2, 1/2 for items 1, 2, 3 respectively: the unique allocation maximizing USW gives

item 1 to Alice and the rest to Bob but then Alice is not envy-free of Bob up to 1 item.

the EF1 property of the MNW allocation and multiple alternative

ways of achieving the PO+EF1 combination have been established.

The other properties of the MNW principle that we have uncovered
for this valuation class (results (b) and (c)) may be of independent

interest (see the discussion in Section 5).

Our computational tractability results (d) are significant since we

know that for arbitrary real valuations, it is NP-hard to compute

the following types of allocations: PO and EF [10]
3
; leximin [8];

and MNW [30]. Moreover, previous work on binary additive valua-

tions establishes the polynomial time-solvability of MNW (and thus

finding a PO and EF1 allocation) via a clever algorithm based on

a subtle running time analysis [5] — we extend this result to the

strictly larger (0, 1)-OXS class by uncovering deeper connections

to the rich literature on combinatorial optimization.

From a technical perspective, our work makes extensive use of

tools and concepts from matroid theory. For instance, most of our

results are based on an observation that the set of clean bundles

(i.e. bundles containing no item with zero marginal value for the

agent under consideration) forms the set of independent sets of

a matroid for every agent. While some papers have explored the

application of matroid theory to the fair division problem [9, 20],

we believe that ours is the first to demonstrate its strong connection

with fairness and efficiency guarantees.

1.2 Related work
Our paper is related to the active research on the fair allocation of

indivisible goods. Budish [11] was first to formalize the EF1 concept,

but it implicitly appears in Lipton et al. [28], who design a poly-time

algorithm that returns an EF1 allocation for monotone valuations.

Caragiannis et al. [12] prove that EF1 and Pareto optimal allocations

exist for non-negative additive valuations; Barman et al. [4] provide

a pseudo-polynomial-time algorithm for computing such alloca-

tions. Barman et al. [5] establish the polynomial time-solvability of

MNW allocations for binary additive valuations via a clever greedy

algorithm based on a subtle running time analysis — we extend this

result to the strictly larger (0, 1)-OXS class by uncovering deeper

connections to the rich literature on combinatorial optimization;

Barman et al. [5]’s algorithm extends to the setting when each

agent’s valuation is a concave function of the number of items she

approves. We note that this valuation class does not subsume the

(0, 1)-OXS class (since bundles with the same number of approved

items may have different values under the latter class), hence their

result does not imply our Theorem 4.1.

One motivation for our paper is recent work by Benabbou et al. [6]

on promoting diversity in assignment problems through efficient,

EF1 allocations of bundles to groups in a population. Other work in

this vein includes fairness/diversity through quotas [2, 7, 36, and

references therein], or by the optimization of carefully constructed

functions [1, 14, 25, and references therein] in allocation/subset

selection.

2 MODEL AND DEFINITIONS
Throughout the paper, given a positive integer r , let [r ] denote the

set {1, 2, . . . , r }. We are given a set N = [n] of agents, and a set

3
The NP-hardness of PO and EF indeed holds even for binary additive valuations. See

Proposition 21 in [10].
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MNW Leximin max-USW+EF1

(0, 1)-OXS poly-time (Theorem 4.1) poly-time (Theorem 4.1) poly-time (Theorem 3.4)

(0, 1)-SUB ? ? poly-time (Theorem 3.4)

Table 1: Summary of our computational complexity results.

O = {o1, . . . ,om } of items or goods. Subsets of O are referred to as

bundles, and each agent i ∈ N has a valuation functionvi : 2
O → R+

over bundles where vi (∅) = 0. We further assume polynomial-time

oracle access to the valuation vi of all agents. Given a valuation

functionvi : 2
O → R, we define themarginal gain of an item o ∈ O

w.r.t. a bundle S ⊆ O , as ∆i (S ;o) ≜ vi (S ∪ {o}) −vi (S ). A valuation

function vi is monotone if vi (S ) ⊆ vi (T ) whenever S ⊆ T .
An allocation A of items to agents is a collection of n disjoint bun-

dlesA1, . . . ,An , such that

⋃
i ∈N Ai ⊆ O ; the bundleAi is allocated

to agent i . Given an allocation A, we denote by A0 the set of un-

allocated items, also referred to as withheld items. We may refer

to agent i’s valuation of its bundle vi (Ai ) under the allocation A
as its realized valuation under A. An allocation is complete if every

item is allocated to some agent, i.e. A0 = ∅. We admit incomplete,

but clean allocations: a bundle S ⊆ O is clean for i ∈ N if it con-

tains no item o ∈ S for which agent i has zero marginal gain (i.e.,

∆i (S \ {o};o) = 0) and an allocation is clean if each agent i ∈ N
receives a clean bundle. It is easy to ‘clean’ any allocation without

changing any realized valuation by iteratively revoking items of

zero marginal gain from respective agents and placing them in A0.

For example, if for agent i , vi ({1}) = vi ({2}) = vi ({1, 2}) = 1, then

the bundle Ai = {1, 2} is not clean for agent i (and neither is any

allocation where i receives items 1 and 2) but it can be cleaned by

moving item 1 (or item 2 but not both) to A0.

2.1 Fairness and efficiency criteria
Our fairness criteria are based on the concept of envy. Agent i envies
agent j under an allocation A if vi (Ai ) < vi (Aj ). An allocation A is

envy-free (EF) if no agent envies another. We will use the following

relaxation of the EF property due to Budish [11]: we say that A is

envy-free up to one good (EF1) if, for every i, j ∈ N , i does not envy
j or there exists o in Aj such that vi (Ai ) ≥ vi (Aj \ {o}).
The efficiency concept that we are primarily interested in is Pareto

optimality. An allocationA′ is said to Pareto dominate the allocation

A if vi (A
′
i ) ≥ vi (Ai ) for all agents i ∈ N and vj (A

′
j ) > vj (Aj ) for

some agent j ∈ N . An allocation is Pareto optimal (or PO for short)

if it is not Pareto dominated by any other allocation.

There are several ways of measuring the welfare of an allocation

[34]. Specifically, given an allocation A,

• its utilitarian social welfare is USW(A) ≜
∑n
i=1

vi (Ai );

• its egalitarian social welfare is ESW(A) ≜ mini ∈N vi (Ai );

• its Nash welfare is NW(A) ≜
∏

i ∈N vi (Ai ).

An allocation A is said to be utilitarian optimal (respectively, egali-

tarian optimal) if it maximizes USW(A) (respectively, ESW(A)) among

all allocations. Since it is possible that the maximum attainable

Nash welfare is 0, we define the maximum Nash social welfare

(MNW) allocation as follows: given a problem instance, we find a

largest subset of agents, say Nmax ⊆ N , to which we can allocate

bundles of positive values, and compute an allocation to agents in

Nmax that maximizes the product of their realized valuations. If

Nmax is not unique, we choose the one that results in the highest

product of realized valuations.

The leximin welfare is a lexicographic refinement of the maximin

welfare concept. Formally, for real n-dimensional vectors x and y,
x is lexicographically greater than or equal to y (denoted by x ≥L y)
if and only if x = y, or x , y and for the minimum index j such
that x j , yj we have x j > yj . For each allocation A, we denote
by θ (A) the vector of the components vi (Ai ) (i ∈ N ) arranged
in non-decreasing order. A leximin allocation A is an allocation

that maximizes the egalitarian welfare in a lexicographic sense, i.e.,

θ (A) ≥L θ (A′) for any other allocation A′.

2.2 Submodular valuations
The main focus of this paper is on fair allocation when agent val-

uations are not necessarily additive but submodular. A valuation

function vi is submodular if each single item contributes more to a

smaller set than to a larger one, namely, for all S ⊆ T ⊆ O and all

o ∈ O \T , ∆i (S ;o) ≥ ∆i (T ;o).
Submodularity is known to arise in many real-life applications. One

important class of submodular valuations is the class of assignment

valuations. This class of valuations was introduced by Shapley [35]

and is identical to the OXS valuation class [26]. Fair allocation in

this setting was explored by Benabbou et al. [6]. Here, each agent

h ∈ N represents a group of individuals Nh (such as ethnic groups

and genders), each individual i ∈ Nh (also called a member) having

a fixed non-negative weightui,o for each item o. An agenth values a

bundle S via amatching of the items to its individuals (i.e. each item

is assigned to at most one member and vice versa) that maximizes

the sum of weights [29]; namely,

vh (S ) = max{
∑
i ∈Nh

ui,π (i ) | π ∈ Π(Nh , S ) },

where Π(Nh , S ) is the set of matchings π : Nh → S in the complete

bipartite graph with bipartition (Nh , S ).
Our particular focus is on submodular functions with binary mar-

ginal gains. We say that vi has binary marginal gains if ∆i (S ;o) ∈
{0, 1} for all S ⊆ O and o ∈ O \S . The class of submodular valuations

with binary marginal gains includes the classes of binary additive

valuations [5] and of assignment valuations where the weight is

binary [6]. We call a valuation function vi (0, 1)-SUB if it is a sub-

modular function with binary marginal gains, and (0, 1)-OXS if it
is an assignment valuation with binary marginal gains.

3 SUBMODULARITY AND BINARY
MARGINAL GAINS

The main theme of all results in this section is that, when all agents

have (0, 1)-SUB valuations, fairness and efficiency properties are

compatible with each other and also with the optimal values of
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all three welfare functions we consider. Lemma 3.1 below shows

that Pareto optimality of optimal welfare is unsurprising; but, it is

non-trivial to prove the EF1 property in each case.

Lemma 3.1. Formonotone valuations, every utilitarian optimal, MNW,

and leximin allocation is Pareto optimal.

Before proceeding further, we state some useful properties of the

(0, 1)-SUB valuation class.

Proposition 3.2. A valuation function vi with binary marginal

gains is always monotone and takes values in [|S |] for any input

bundle S (hence vi (S ) ≤ |S |).

This property leads us to the following equivalence between the

size and realized valuation of every clean, allocated bundle for the

valuation subclass under consideration — a crucial component in all

our proofs. Note that cleaning any optimal-welfare allocation leaves

the welfare unaltered and ensures that each resulting withheld item

is of zero marginal gain to each agent; hence it preserves the PO

condition.

Proposition 3.3. For submodular valuations with binary marginal

gains, A is a clean allocation if and only if vi (Ai ) = |Ai | for each
i ∈ N .

A simple example of one good and two agents shows that an envy-

free and Pareto optimal allocation may not exist even under (0, 1)-
SUB valuations. This justifies our quest for EF1 and Pareto-optimal

allocations.

3.1 Utilitarian optimal and EF1 allocation
For non-negative additive valuations, Caragiannis et al. [12] prove

that every MNW allocation is Pareto optimal and EF1. However, the

existence question of an allocation satisfying PO and EF1 remains

open for submodular valuations. We show that the existence of a

PO+EF1 allocation [12] extends to a class of submodular valuations

with binary marginal gains. In fact, we provide a surprising relation

between efficiency and fairness: both utilitarian optimality and EF1

turn out to be compatible under (0, 1)-SUB valuations.

Theorem 3.4. For submodular valuations with binarymarginal gains,

a utilitarian optimal allocation that is also EF1 exists and can be

computed in polynomial time.

Our result is constructive: we provide a way of computing the above

allocation in Algorithm 1. The proof of Theorem 3.4 and those of

the latter theorems utilize Lemmas 3.5 and 3.6 which shed light on

the interesting interaction between envy and (0, 1)-SUB valuations.

Lemma 3.5 (Transferability property). Formonotone submodular

valuation functions, if agent i envies agent j under an allocation A,
then there is an item o ∈ Aj for which i has a positive marginal gain.

Proof. Assume that agent i envies agent j under an allocation A,
i.e. vi (Ai ) < vi (Aj ), but no item o ∈ Aj has a positive marginal

gain, i.e., ∆i (Ai ;o) = 0 for each o ∈ Aj . Let Aj = {o1,o2, . . . ,or }.
Define S0 = ∅ and St = {o1,o2, . . . ,ot } for each t ∈ [r ]. This gives

us the following telescoping series:

vi (Ai ∪Aj ) −vi (Ai ) =
r∑
t=1

∆i (Ai ∪ St−1;ot ).

However, submodularity implies that for each t ∈ [r ], ∆i (Ai ∪
St−1;ot ) ≤ ∆i (Ai ;ot ) = 0, meaning that

vi (Ai ∪Aj ) −vi (Ai ) =
r∑
t=1

∆i (Ai ∪ St−1;ot ) = 0.

Together with monotonicity, this yields vi (Aj ) ≤ vi (Ai ∪ Aj ) =
vi (Ai ) < vi (Aj ), a contradiction. □

Note that Lemma 3.5 holds for submodular functions with arbitrary

real-valued marginal gains, and is trivially true for non-negative

additive valuations. However, there exist non-submodular valuation

functions that violate the transferability property, even when they

have binary marginal gains.

Below, we show that if i’s envy towards j cannot be eliminated by

removing one item, then the sizes of their “clean" bundles differ at

least by two. Formally, we say that agent i envies j up to more than

1 item if Aj , ∅ and vi (Ai ) < vi (Aj \ {o}) for every o ∈ Aj .

Lemma 3.6. For submodular functions with binary marginal gains, if

agent i envies agent j up to more than 1 item under a clean allocation

A, then |Aj | ≥ |Ai | + 2.

Proof. From the definition: Aj , ∅ and vi (Ai ) < vi (Aj \ {o})
for every o ∈ Aj . Consider one such o. From Proposition 3.2,

vi (Aj \ {o}) ≤ |Aj \ {o}| = |Aj | − 1. Since A is clean, vi (Ai ) = |Ai |.
Combining these, we get

|Ai | = vi (Ai ) < vi (Aj \ {o}) ≤ |Aj | − 1,

which proves the theorem statement. □

We are now ready to show that under (0, 1)-SUB valuations, utilitar-

ian social welfare maximization is polynomial-time solvable (3.7).

To this end, we will exploit the fact that the set of clean bundles

forms the set of independent sets of a matroid. We start by intro-

ducing some notions from matroid theory. Formally, a matroid is

an ordered pair (E,I), where E is some finite set and I is a family

of its subsets (referred to as the independent sets of the matroid),

which satisfies the following three axioms:

(I1) ∅ ∈ I,

(I2) if Y ∈ I and X ⊆ Y , then X ∈ I, and

(I3) if X ,Y ∈ I and |X | > |Y |, then there exists x ∈ X \ Y

such that Y ∪ {x } ∈ I.

The rank function r : 2
E → Z of a matroid returns the rank of

each set X , i.e. the maximum size of an independent subset of X .
Another equivalent way to define a matroid is to use the axiom

systems for a rank function. We require that (R1) r (X ) ≤ |X |, (R2) r
is monotone, and (R3) r is submodular. Then, the pair (E,I) where
I = {X ⊆ E | r (X ) = |X | } is a matroid.

Theorem 3.7. For submodular functions with binary marginal gains,

one can compute a clean utilitarian optimal allocation in polynomial

time.

Proof. We prove the claim by a reduction to the matroid inter-

section problem. Let E be the set of pairs of items and agents, i.e.,

E = { {o, i} | o ∈ O ∧ i ∈ N }. For each i ∈ N and X ⊆ E, we define
Xi to be the set of edges incident to i , i.e., Xi = { {o, i} ∈ X | o ∈ O }.
Note that taking E = X , Ei is the set of all edges in E incident to
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i ∈ N . For each i ∈ N and for each X ⊆ E, we define ri (X ) to be the
valuation of i , under function vi (·), for the items o ∈ O such that

{o, i} ∈ Xi ; namely, ri (X ) = vi ({ o ∈ O | {o, i} ∈ Xi }). Clearly, ri is
also a submodular function with binary marginal gains; combining

this with Proposition 3.2 and the fact that ri (∅) = 0, it is easy to

see that each ri is a rank function of a matroid. Thus, the set of

clean bundles for i , i.e Ii = {X ⊆ Ei | ri (X ) = |X | }, is the set of
independent sets of a matroid. Taking the union

I = {X1 ∪ · · · ∪ Xn | Xi ∈ Ii , ∀i ∈ N },

the pair (E,I) is known to form amatroid [24], often referred to as a

union matroid. By definition, any independent set in I corresponds

to a union of clean bundles for each i ∈ N and vice versa. To ensure

that each item is assigned at most once (i.e. bundles are disjoint),

we will define another matroid (E,O) where the set of independent
sets is given by

O = {X ⊆ E | |X ∩ Eo | ≤ 1,∀o ∈ O }.

Here, Eo = { e = {o, i} | i ∈ N } for o ∈ O . The pair (E,O) is
known as a partition matroid [24]. Now, observe that a common

independent set of the two matroids X ∈ O ∩ I corresponds to

a clean allocation A of our original instance where each agent i
receives the items o with {o, i} ∈ X ; indeed, each item o is allocated
at most once because |Eo ∩ X | ≤ 1, and each Ai is clean because

the realized valuation of agent i under A is exactly the size of the

allocated bundle. Conversely, any clean allocationA of our instance

corresponds to a common independent set X ∈ I ∩ O. To see

this, given a clean allocation A, let X = { {o, i} | o ∈ Ai ∧ i ∈ N }.
Then, Xi = { {o, i} | o ∈ Ai } for each i ∈ N . By Proposition 3.3,

ri (Xi ) = |Xi | for each i ∈ N , and hence Xi ∈ Ii , which implies that

X ∈ I; also, |X ∩ Eo | ≤ 1 as A is an allocation, and hence X ∈ O.
Thus, the maximum utilitarian social welfare is the same as the

size of a maximum common independent set in I ∩ O. It is well

known that one can find a largest common independent set in two

matroids in time O ( |E |3θ ) where θ is the maximum complexity of

the two independence oracles [15]. Since the maximum complexity

of checking independence in two matroids (E,O) and (E,I) is
bounded by O (mnF ) where F is the maximum complexity of the

value query oracle, we can find a set X ∈ I ∩ O with maximum

|X | in time O ( |E |3mnF ). This completes the proof. □

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. Algorithm 1 maintains optimal USW as an

invariant and terminates on an EF1 allocation. Specifically, we first

compute a clean allocation that maximizes the utilitarian social

welfare. The EIT subroutine in the algorithm iteratively eliminates

envy by transferring an item from the envied bundle to the envious

agent; Lemma 3.5 ensures that there is always an item in the envied

bundle for which the envious agent has a positive marginal gain.

Correctness: Each EIT step maintains the optimal utilitarian social

welfare as well as cleanliness: an envied agent’s valuation dimin-

ishes exactly by 1 while that of the envious agent increases by

exactly 1. Thus, if it terminates, the EIT subroutine retains the ini-

tial (optimal) USW and, by the stopping criterion, induces the EF1

property. To show that the algorithm terminates in polynomial

time, we define the potential function ϕ (A) :=
∑
i ∈N vi (Ai )

2
.

Algorithm 1: Algorithm for finding utilitarian optimal EF1

allocation

1 Compute a clean, utilitarian optimal allocation A.

2 /*Envy-Induced Transfers (EIT)*/
3 while there are two agents i, j such that i envies j more than 1

item. do
4 Find item o ∈ Aj with ∆i (Ai ;o) = 1.

5 Aj ← Aj \ {o}; Ai ← Ai ∪ {o}.

6 end

At each step of the algorithm, ϕ (A) strictly decreases by 2 or a

larger integer. To see this, let A′ denote the resulting allocation

after reallocation of itemo from agent j to i . SinceA is clean, we have

vi (A
′
i ) = vi (Ai ) + 1 and vj (A

′
j ) = vj (Aj ) − 1. Also, since i envies j

up to more than one item under allocation A, vi (Ai ) + 2 ≤ vj (Aj )
by Lemma 3.6. Combining these, we get

(vi (Ai ) + 1)2 + (vj (Aj ) − 1)2 −vi (Ai )
2 −vj (Aj )

2

= 2(1 +vi (Ai ) −vj (Aj )) ≤ −2.

Complexity: It remains to analyze the running time of the algorithm.

By Theorem 3.7, computing a clean utilitarian optimal allocation

can be done in polynomial time. The value of the non-negative

potential function has a polynomial upper bound:

∑
i ∈N vi (Ai )

2 ≤

(
∑
i ∈N vi (Ai ))

2 ≤ m2
. Thus, Algorithm 1 terminates in polynomial

time. □

An interesting implication ofAlgorithm 1, specifically the above

potential function argument, is that a utilitarian optimal allocation

that minimizes

∑
i ∈N vi (Ai )

2
is always EF1.

Corollary 3.8. For submodular valuations with binary marginal

gains, any clean utilitarian optimal allocation A that minimizes

ϕ (A) :=
∑
i ∈N vi (Ai )

2
among all utilitarian optimal allocations

is EF1.

Despite its simplicity, Algorithm 1 significantly generalizes that of

Benabbou et al. [6]’s Theorem 4 (which ensures the existence of

a non-wasteful EF1 allocation for (0, 1)-OXS valuations) to (0, 1)-
SUB valuations. We note, however, that the resulting allocation

may be neither MNW nor leximin even when agents have (0, 1)-
OXS valuations: see Example 1 in Benabbou et al. [6] (2 groups

with (0, 1)-OXS valuations), which also shows that the converse of

Corollary 3.8 does not hold.

3.2 MNW and Leximin allocation
We saw that under (0, 1)-SUB valuations, a simple iterative proce-

dure allows us to reach an EF1 allocation while preserving utilitar-

ian optimality. However, as we previously noted, such allocations

are not necessarily leximin or MNW. In this subsection, we char-

acterize the set of leximin and MNW allocations under (0, 1)-SUB
valuations. We start by showing that Pareto optimal allocations

coincide with utilitarian optimal allocations when agents have

(0, 1)-SUB valuations. Intuitively, if an allocation is not utilitarian

optimal, one can always find an ‘augmenting’ path that makes at

least one agent happier but no other agent worse off.
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In the subsequent proof, we will use the following notions and

results from matroid theory: Given a matroid (E,I), the sets in

2
E \ I are called dependent, and a minimal dependent set of a

matroid is called a circuit. The following is a crucial property of

circuits.

Lemma 3.9 (Korte and Vygen [24]). Let (E,I) be a matroid,X ∈ I,
and y ∈ E \ X such that X ∪ {y} < I. Then the set X ∪ {y} contains
a unique circuit.

Given a matroid (E,I), we denote by C (I,X ,y) the unique circuit
contained in X ∪ {y} for any X ∈ I and y ∈ E \ X such that

X ∪ {y} < I.

Theorem 3.10. For submodular valuations with binary marginal

gains, any Pareto optimal allocation is utilitarian optimal.

Proof. Define E, Xi , Ei , Ii for i ∈ N , I, and O as in the proof of

Theorem 3.7.We first observe that for eachX ∈ I and eachy ∈ E\X ,

if X ∪ {y} < I, then there is agent i ∈ N whose corresponding

items in Xi together with y is not clean, i.e., Xi ∪ {y} < Ii , which
by Lemma 3.9 implies that the circuit C (I,X ,y) is contained in Ei ,
i.e.,

C (I,X ,y) = C (Ii ,X ,y). (1)

Now to prove the claim, letA be a Pareto optimal allocation.Without

loss of generality, we assume that A is clean. Then, as we have seen

before, A corresponds to a common independent set X ∗ in I ∩ O
given by

X ∗ =
⋃
i ∈N
{ e = {o, i} ∈ E | o ∈ Ai }.

Suppose towards a contradiction that A does not maximize the util-

itarian social welfare. This means that X ∗ is not a largest common

independent set of I and O. It is known that given two matroids

and their common independent set, if it is not a maximum-size

common independent set, then there is an ‘augmenting’ path [15].

To formally define an augmenting path, we define an auxiliary

graph GX ∗ = (E,B
(1)
X ∗ ∪ B

(2)
X ∗ ) where the set of arcs is given by

B
(1)
X ∗ = { (x ,y) | y ∈ E \ X

∗ ∧ x ∈ C (O,X ∗,y) \ {y} },

B
(2)
X ∗ = { (y,x ) | y ∈ E \ X

∗ ∧ x ∈ C (I,X ∗,y) \ {y} }.

Since X ∗ is not a maximum common independent set of O and

I, the set X ∗ admits an augmenting path, which is an alternating

path P = (y0,x1,y1, . . . ,xs ,ys ) inGX ∗ withy0,y1, . . . ,ys < X
∗
and

x1,x2, . . . ,xs ∈ X
∗
, where X ∗ can be augmented by one element

along the path, i.e.,

X ′ = (X ∗ \ {x1,x2, . . . ,xs }) ∪ {y0,y1, . . . ,ys } ∈ I ∩ O.

Now let’s write the pairs of agents and items that correspond to yt
and xt as follows:

• yt = {i (yt ),o(yt )} where i (yt ) ∈ N and o(yt ) ∈ O for t =
0, 1, . . . , s; and
• xt = {i (xt ),o(xt )} where i (xt ) ∈ N and o(xt ) ∈ O for t =

1, 2, . . . , s .

Since each xt (t ∈ [s]) belongs to the unique circuitC (I,X ∗,yt−1),
which is contained in the set of edges incident to i (yt−1) by the

observation made in (1), we have i (xt ) = i (yt−1) for each t ∈ [s].
This means that along the augmenting path P , each agent i (xt )
receives a new item o(yt−1) and discards the old item o(xt ).

Now consider the reallocation corresponding to X ′ where agent
i (xt ) receives a new item o(yt−1) but loses the item o(xt ) for each
t = 1, 2, . . . , s , and agent i (ys ) receives the item o(ys ). Such a

reallocation increases the valuation of agent i (ys ) by 1, while it

does not decrease the valuations of all the intermediate agents,

i (x1), i (x2), . . . , i (xs ), as well as the other agents whose agents do
not appear on P . We thus conclude that A is Pareto dominated by

the new allocation, a contradiction. □

Theorem 3.10 above, along with Lemma 3.1, implies that both lex-

imin and MNW allocations are utilitarian optimal. Next, we show

that for the class of (0, 1)-SUB valuations, leximin and MNW alloca-

tions are identical to each other; further, they can be characterized

as the minimizers of any symmetric strictly convex function among

all utilitarian optimal allocations.

A function Φ : Zn → R is symmetric if for any permutation π :

[n]→ [n],

Φ(z1, z2, . . . , zn ) = Φ(zπ (1) , zπ (2) , . . . , zπ (n) ),

and is strictly convex if for any x ,y ∈ Zn with x , y and λ ∈ (0, 1)
where λx + (1 − λ)y is an integral vector,

λΦ(x ) + (1 − λ)Φ(y) > Φ(λx + (1 − λ)y).

Examples of symmetric, strictly convex functions are the following:

Φ(z) ≜
∑n
i=1

z2

i for zi ∈ Z ∀i ∈ [n] and Φ(z) ≜
∑n
i=1

zi ln zi for
zi ∈ Z≥0 ∀i ∈ [n].

We start by showing that given a non-leximin socially optimal

allocation A, there exists an adjacent socially optimal allocation Afi

which is the result of transferring one item from a ‘happy’ agent j
to a less ‘happy’ agent i . The underlying submodularity guarantees

the existence of such allocation. We denote by χi the n-dimensional

incidence vector where the j-th component of χi is 1 if j = i , and it

is 0 otherwise.

Lemma 3.11. Suppose that agents have (0,1)−SUB valuations. Let A
be a utilitarian optimal allocation. If A is not a leximin allocation,

then there is another utilitarian optimal allocation A′ such that

θ (A′) = θ (A) + χi − χj ,

for i, j ∈ [n] with θ (A)j ≥ θ (A)i + 2.

Proof. Let A be an arbitrary utilitarian optimal allocation which

is not leximin, and let A∗ be a leximin allocation. Recall that A∗

is utilitarian optimal by Theorem 3.10. Without loss of general-

ity, we assume that both A and A∗ are clean allocations. Now

take a clean allocation A′ that minimizes the symmetric differ-

ence

∑
i ∈N |A

′
i△A

∗
i | over all clean allocation with θ (A′) = θ (A).

Assume also w.l.o.g. that v1 (A
′
1
) ≤ v2 (A

′
2
) ≤ · · · ≤ vn (A

′
n ). We let

vi1 (A
∗
i1 ) ≤ vi2 (A

∗
i2 ) ≤ · · · ≤ vin (A

∗
in ). Since θ (A

′) is leximin, for

the minimum index k with vj (A
′
k ) , vik (A

∗
ik
),

vk (A
′
k ) < vik (A

∗
ik ). (2)

We note that vh (A
′
h ) = vih (A

∗
ih
) for all 1 ≤ h ≤ k − 1. By (2), there

exists i ∈ [k] with

vk (A
′
i ) < vk (A

∗
i ). (3)

Indeed, if for all i ∈ [k],vi (A
′
i ) ≥ vk (A

∗
i ), the k-th smallest value of

realized valuations underA′ is at least vik (A
∗
ik
), contradicting with

(2). Take the minimum index i satisfying (3). By minimality, for all
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h ∈ [i − 1], vh (A
′
h ) ≥ vh (A

∗
h ); indeed, the equality holds for all

h ∈ [i−1]. Otherwise, it would contradict the fact thatA∗ is leximin.

Now, by (I3) of the independent-set matroid axioms, there exists

an item o1 ∈ A
∗
i \A

′
i with positive contribution to A′i , i.e., vi (A

′
i ∪

{o1}) = vi (A
′
i )+1. By utilitarian optimality ofA′, o1 ∈ A

′
j1 for some

j1 , i . If vj1 (A
′
j1 ) ≥ vi (A

′
i ) + 2, we obtain a desired allocation by

transferring o1 from j1 to i . Thus, consider the case whenvj1 (A
′
j1 ) ≤

vi (A
′
i ) + 1. If vj1 (A

′
j1 ) = vi (A

′
i ) + 1, then by transferring o1 from

j1 to i , we get another utilitarian optimal allocation with the same

vector as θ (A′), which has a smaller symmetric difference than∑
i ∈N |A

′
i△A

∗
i |, a contradiction. Thus, vj1 (A

′
j1 ) ≤ vi (A

′
i ). Since A

∗

is leximin, vj1 (A
′
j1 ) ≤ vj1 (A

∗
j1 ). Further by A′j1 , A∗j1 , there exists

an item o2 ∈ A∗j1 \ A
′
j1 such that vj1 (A

′
j1 ∪ {o2} \ {o1}) = vi (A

′
j1 ).

Again by utilitarian optimality of A′, o2 ∈ A′j2 for some j2 , j1.

Repeating the same argument, we obtain a sequence of items and

agents (j0,o1, j1,o2, j2, . . . ,ot , jt ) such that

• vjh (A
′
jh
) = vjh (A

′
jh
∪ {oh+1

} \ {oh }) for all 1 ≤ h ≤ t − 1; and

• oh ∈ A
∗
jh−1

\A′jh
for all 1 ≤ h ≤ t .

Here j0 = i . If the same agent appears again, i.e., jt = jh for

some h < t , then by transferring items along the cycle, we can

decrease the symmetric difference with A∗, a contradiction. Thus,
the sequence must terminate when we reach the agent jt with

vjt (A
′
jt ) ≥ vi (A

′
i ) + 2. Exchanging items along the path, we get a

desired allocation. □

We further observe that such adjacent allocation improves the value

of any symmetric strictly convex function.

Lemma 3.12. Let Φ : Zn → Z be a symmetric strictly convex function.

Let A be a utilitarian optimal allocation. Let A′ be another utilitarian
optimal allocation such that θ (A′) = θ (A)+ χi − χj for some i, j ∈ [n]

with θ (A)j ≥ θ (A)i + 2. Then Φ(A) > Φ(A′).

Proof. The proof is similar to that of Proposition 6.1 in Frank

and Murota [17], which shows the analogous equivalence over

the integral base-polyhedron. Let β = θ (A)j − θ (A)i ≥ 2, and

y = θ (A) + β (χi − χj ). Thus Φ(θ (A)) = Φ(y) by symmetry of Φ.

Define λ = 1 − 1

β . We have 0 < λ < 1 since β ≥ 2. Observe that

λθ (A) + (1 − λ)y = (1 −
1

β
)θ (A) +

1

β
(θ (A) + β (χi − χj ))

= θ (A) + χi − χj = θ (A
′),

which gives us the following inequality (from the strict convexity

of Φ): Φ(θ (A)) = λΦ(θ (A)) + (1 − λ)Φ(θ (A)) > Φ(θ (A′)). □

Now we are ready to prove the following.

Theorem 3.13. Let Φ : Zn → R be a symmetric strictly convex

function; let A be some allocation. For submodular valuations with

binary marginal gains, the following statements are equivalent:

(1) A is a minimizer of Φ over all the utilitarian optimal allocations;

and

(2) A is a leximin allocation; and

(3) A maximizes Nash welfare.

Proof. To prove 1 ⇔ 2, let A be a leximin allocation, and let A′

be a minimizer of Φ over all the utilitarian optimal allocations. We

will show that θ (A′) is the same as θ (A), which, by the uniqueness

of the leximin valuation vector and symmetry of Φ, proves the
theorem statement.

Assume towards a contradiction that θ (A) , θ (A′). By Theorem

3.10, we have USW(A) = USW(A′). By Lemma 3.11, we can obtain

another utilitarian optimal allocation A′′ that is a lexicographic

improvement of A′ by decreasing the value of the j-th element of

θ (A′) by 1 and increasing the value of the i-th element of θ (A′)
by 1, where θ (A′)j ≥ θ (A′)i + 2. Applying Lemma 3.12, we get

Φ(θ (A′)) > Φ(θ (A′′)), which gives us the desired contradiction.

To prove 2 ⇔ 3, let A be a leximin allocation, and let A′ be an

MNW allocation. Again, we will show that θ (A′) is the same as

θ (A), which by the uniqueness of the leximin valuation vector

and symmetry of NW, proves the theorem statement. Let N>0 (A)
(respectively, N>0 (A

′)) be the agent subset to which we allocate

bundles of positive values under leximin allocation A (respectively,

MNW allocation A′). By definition, the number n′ of agents who
get positive values under leximin allocation A is the same as that of

MNW allocation A′. Now we denote by
¯θ (A) (respectively, ¯θ (A′))

the vector of the non-zero componentsvi (Ai ) (respectively,vi (A
′
i ))

arranged in non-decreasing order. Assume towards a contradic-

tion that
¯θ (A) >L ¯θ (A′). Since A′ maximizes the product NW(A′)

when focusing on N>0 (A
′) only, the value

∑
i ∈N>0 (A′) logvi (A

′
i ) is

maximized. However, ϕ (x ) = −
∑n′
i=1

logxi is a symmetric convex

function for x ∈ Zn with each xi > 0. Thus, by a similar argument

as before, one can show that ϕ ( ¯θ (A′)) < ϕ ( ¯θ (A)), a contradiction.
This completes the proof. □

The above statement does not generalize to the non-binary case:

there is an instance where neither leximin nor MNW allocation

is utilitarian optimal. Theorem 3.13 and Corollary 3.8 imply the

following result.

Corollary 3.14. For submodular valuations with binary marginal

gains, any clean leximin or MNW allocation is EF1.

4 ASSIGNMENT VALUATIONS WITH BINARY
GAINS

We now consider the special but practically important case when

valuations come from maximum matchings. For this class, we show

that invoking Theorem 3.10, one can find a leximin or MNW al-

location in polynomial time, by a reduction to the network flow

problem. We note that the complexity of the problem remains open

for general submodular valuations with binary marginal gains.

Theorem 4.1. For assignment valuations with binary marginal gains,

one can find a leximin or MNW allocation in polynomial time.

Proof Sketch. The problem of finding a leximin allocation can be

reduced to that of finding an integral balanced flow in a network,

which has been recently shown to be polynomial-time solvable

[18]. Specifically, for a network D = (V ,A) with source s , sink t ,
and a capacity function c : A→ Z, a balanced flow is a maximum

integral feasible flow where the out-flow vector from the source s
to the adjacent vertices h is lexicographically maximized among all

maximum integral feasible flows; that is, the smallest flow-value

on the edges (s,h) is as large as possible, the second smallest flow-

value on the edges (s,h) is as large as possible, and so on. Frank
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and Murota [18] show that one can find a balanced flow in strongly

polynomial time (see Section 7 in Frank and Murota [18]).

Now, given an instance of assignment valuations with binary mar-

ginal gains, we build the following instance (V ,A) of a network
flow problem. Let Nh denote the set of members in each group h.
We first create a source s and a sink t . We create a vertex h for each

group h, a vertex i for each member i of some group, and a vertex o
for each item o. We construct the edges of the network as follows:

• for each group h, create an edge (s,h) with capacitym; and

• for each group h and member i in group h, create an edge (h, i )
with unit capacity; and

• for each member i of some group and item o for which i has
positive weight uio (i.e. uio = 1), create an edge (i,o) with unit

capacity; and

• for each item o, create an edge (o, t ) with unit capacity.

We can easily verify that an integral balanced flow f : A → Z of
this network corresponds to a leximin allocation. Thus, among all

utilitarian optimal allocations, Af lexicographically maximizes the

valuation of each group, and hence Af is a leximin allocation. By

Theorem 3.13, the leximin allocation Af is also MNW. □

In contrast with assignment valuations with binary marginal gains,

we show that the problem of computing a leximin or MNW allo-

cation becomes NP-hard for weighted assignment valuations even

when there are only two agents.

Theorem 4.2. For two agents with general assignment valuations, it

is NP-hard to compute a leximin or MNW allocation.

The proof is omitted owing to space constraints and deferred to

a full version of the paper. To summarize, the reduction is similar

to the hardness reduction for two agents with identical additive

valuations [31, 33]: we give a Turing reduction from Partition.

5 DISCUSSION
We studied allocations of indivisible goods under submodular valu-

ations with binary marginal gains in terms of the interplay among

envy, efficiency, and variouswelfare concepts.We showed that three

seemingly disjoint outcomes – minimizers of arbitrary symmetric

strictly convex functions among utilitarian optimal allocations, the

leximin allocation, and the MNW allocation – coincide in this class

of valuations. In particular, Theorem 3.13 reduces the problem of

finding a leximin/MNW allocation for (0, 1)-SUB valuations to the

minimization of the sum of squared valuations subject to utilitarian

optimality, which can be solved efficiently in practice using standard

solvers for convex programming. We will conclude with additional

implications of this work and further research directions.

Other fairness criteria. The fairness concept we consider here is
(approximate) envy-freeness. An obvious next step is to explore

other criteria such as proportionality (each agent gets at least 1/n of

her valuation of the full collection of goods O), the maximin share

guarantee or MMS (each agent gets at least as much value as she

would realize if allowed to partitionO completely among all agents

knowing the she would receive her least favorite part), equitability

(all agents have equal realized valuations), etc. (see, e.g. [12, 19] and

references therein for further details) for (0, 1)-SUB valuations.

Freeman et al. [19] show that: an allocation that is equitable up

to one item or EQ1 (a relaxation of equitability in the same spirit

as EF1) and PO may not exist even for binary additive valuations;

however, for this valuation class, it can be verified in polynomial

time whether an EQ1, EF1 and PO allocation exists and, whenever it

does exist, it can also be computed in polynomial time (for the time

complexity result, they show that such an allocation is MNW). We

can extend this result to (0, 1)-OXS valuations: we first show that

any EQ1 and PO allocation under the (0, 1)-SUB valuation class, if

it exists, is leximin, then invoke Corollary 3.14 to conclude that it

must be EF1 and finally Theorem 4.1 to establish its polynomial-

time complexity for the (0, 1)-OXS class (the full proof is deferred
to a full version of the paper).

More general valuation functions. Another imperative line of

future work is investigating which of our findings extend to more

general submodular valuations (i.e. those with positive real mar-

ginal gains). An obvious generalization of the (0, 1)-SUB valuation

function class is the class of submodular valuation functions with

subjective binary marginal gains, i.e. ∆i (S ;o) ∈ {0, λi } for some

agent-specific constant λi > 0, for every i ∈ N . For this valuations

class that we call (0, λi )-SUB, we can show that any clean, MNW
allocation is still EF1 (clean bundles being defined the same way

as for (0, 1)-SUB valuations) but the leximin and MNW allocations

no longer coincide and leximin no longer implies EF1 (see the full

version for details).

For general assignment valuations (i.e. members have positive real

weights for items), we have no theoretical guarantees yet. How-

ever, we ran experiments on a real-world dataset, comparing the

performance of a heuristic extension of Algorithm 1 (Section 3.1)

to real-valued individual-item utilities (weights) with Lipton et al.

[28]’s envy graph algorithm in terms of the number of items wasted

(left unassigned or assigned to individuals with zero utility for it

although another agent has positive utility for the item). These

experiments suggest that approximate envy-freeness can often be

achieved in practice simultaneously with good efficiency guaran-

tees even for this larger valuation class.

It is important to note that the class of rank functions of a matroid

(equivalently, (0, 1)-SUB functions) is a subclass of the gross substi-

tutes (GS) valuations [21, 23]. A promising research direction is to

investigate PO+EF1 existence for GS valuations.

Implications for diversity. Finally, the analysis of submodular

valuations ties in with existing works on diversity in various fields

from biology to machine learning (see, e.g. Celis et al. [13], Jost [22]).

A popular measurement for how diverse a solution is is to apply

one of several concave functions called diversity indices to the pro-

portions of the different entities/attributes (with respect to which

we wish to be diverse) in the solution, e.g. the Shannon entropy

and the Gini-Simpson index: if we denote the maximum USW of

one of the problem instances studied in this paper byU ∗ and agent

i’s realized valuation in a utilitarian optimal allocation as ui , then
the above two indices can be expressed as −

∑
i ∈N (ui/U ∗) ln(ui/U ∗)

and 1 −
∑
i ∈N (ui/U ∗)2 respectively such that

∑
i ∈N ui = U

∗
. Thus,

Theorem 3.13 also shows that, for (0, 1)-SUB valuations, the MNW

or leximin principle maximizes among all utilitarian optimal allo-

cations commonly used diversity indices applied to shares of the

agents in the optimal USW. It will be interesting to explore potential
connections of this concept to recent work on soft diversity framed

as convex function optimization [1].



Finding Fair and Efficient Allocations When Valuations Don’t Add Up AAMAS’20, May 2020, Auckland, New Zealand

REFERENCES
[1] Faez Ahmed, John P. Dickerson, and Mark Fuge. 2017. DiverseWeighted Bipartite

b-Matching. In Proceedings of the 26th International Joint Conference on Artificial

Intelligence (IJCAI). 35–41.

[2] Haris Aziz, Serge Gaspers, Zhaohong Sun, and Toby Walsh. 2019. From Matching

with Diversity Constraints to Matching with Regional Quotas. In Proceedings of

the 18th International Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS). 377–385.

[3] Siddharth Barman, Ganesh Ghalme, Shweta Jain, Pooja Kulkarni, and Shivika

Narang. 2019. Fair Division of Indivisible Goods Among Strategic Agents. In

Proceedings of the 18th International Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS). 1811–1813.

[4] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Find-

ing fair and efficient allocations. In Proceedings of the 19th ACM Conference on

Economics and Computation (EC). ACM, 557–574.

[5] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Greedy

Algorithms for Maximizing Nash Social Welfare. In Proceedings of the 17th Inter-

national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).

7–13.

[6] Nawal Benabbou, Mithun Chakraborty, Edith Elkind, and Yair Zick. 2019. Fairness

Towards Groups of Agents in the Allocation of Indivisible Items. In Proceedings

of the 28th International Joint Conference on Artificial Intelligence (IJCAI). 95–101.

[7] Nawal Benabbou, Mithun Chakraborty, Vinh Ho Xuan, Jakub Sliwinski, and Yair

Zick. 2018. Diversity Constraints in Public Housing Allocation. Proceedings of

the 17th International Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS) (2018), 973–981.

[8] Ivona Bezáková and Varsha Dani. 2005. Allocating indivisible goods. ACM

SIGecom Exchanges 5, 3 (2005), 11–18.

[9] Arpita Biswas and Siddharth Barman. 2018. Fair Division Under Cardinality

Constraints. In Proceedings of the 27th International Joint Conference on Artificial

Intelligence (IJCAI). 91–97.

[10] Sylvain Bouveret and Jérôme Lang. 2008. Efficiency and envy-freeness in fair

division of indivisible goods: Logical representation and complexity. Journal of

Artificial Intelligence Research 32 (2008), 525–564.

[11] Eric Budish. 2011. The combinatorial assignment problem: Approximate compet-

itive equilibrium from equal incomes. Journal of Political Economy 119, 6 (2011),

1061–1103.

[12] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg

Shah, and Junxing Wang. 2016. The unreasonable fairness of maximum Nash

welfare. In Proceedings of the 17th ACM Conference on Economics and Computation

(EC). ACM, 305–322.

[13] L. Elisa Celis, Amit Deshpande, Tarun Kathuria, and Nisheeth K. Vishnoi. 2016.

How to be fair and diverse?. In 3rd, arXiv preprint arXiv:1610.07183.

[14] John P Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan

Xu. 2019. Balancing Relevance and Diversity in Online Bipartite Matching via

Submodularity. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence

(AAAI). 1877–1884.

[15] Jack Edmonds. 1979. Matroid Intersection. Annals of Discrete Mathematics 4

(1979), 39–49. Discrete Optimization I.

[16] Duncan Foley. 1967. Resource allocation and the public sector. Yale Economics

Essays 7 (1967), 45–98.

[17] András Frank and Kazuo Murota. 2019. Discrete Decreasing Minimization, Part

I: Base-polyhedra with Applications in Network Optimization. arXiv e-prints,

Article arXiv:1808.07600v3 (Jul 2019).

[18] András Frank and Kazuo Murota. 2019. Discrete Decreasing Minimization, Part

III: Network Flows. arXiv e-prints, Article arXiv:1907.02673v2 (Sep 2019).

[19] Rupert Freeman, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. 2019. Equitable

Allocations of Indivisible Goods. In Proceedings of the 28th International Joint

Conference on Artificial Intelligence (IJCAI). 280–286.

[20] Laurent Gourvès and Jérôme Monnot. 2017. Approximate Maximin Share Alloca-

tions in Matroids. InAlgorithms and Complexity, Dimitris Fotakis, Aris Pagourtzis,

and Vangelis Th. Paschos (Eds.). Springer International Publishing, 310–321.

[21] Frank Gul and Ennio Stacchetti. 1999. Walrasian equilibrium with Gross Substi-

tutes. Journal of Economic Theory 87 (1999), 95–124. Issue 1.

[22] Lou Jost. 2006. Entropy and diversity. Oikos 113, 2 (2006), 363–375.

[23] Alexander S. Kelso and Vincent P. Crawford. 1982. Job Matching, Coalition

Formation, and Gross Substitutes. Econometrica 50, 6 (1982), 1483–1504.

[24] B. Korte and J. Vygen. 2006. Combinatorial Optimization: Polyhedra and Efficiency.

Springer.

[25] Jérôme Lang and Piotr Krzysztof Skowron. 2016. Multi-Attribute Proportional

Representation. In Proceedings of the 30th AAAI Conference on Artificial Intelligence

(AAAI). 530–536.

[26] Benny Lehmann, Daniel Lehmann, and Noam Nisan. 2006. Combinatorial auc-

tions with decreasing marginal utilities. Games and Economic Behavior 55, 2

(2006), 270–296.

[27] Renato Paes Leme. 2017. Gross substitutability: An algorithmic survey. Games

and Economic Behavior 106 (2017), 294 – 316.

[28] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. 2004.

On approximately fair allocations of indivisible goods. In Proceedings of the 5th

ACM Conference on Electronic Commerce (EC). ACM, 125–131.

[29] James Munkres. 1957. Algorithms for the assignment and transportation prob-

lems. J. Soc. Indust. Appl. Math. 5, 1 (1957), 32–38.

[30] Nhan-Tam Nguyen, Trung Thanh Nguyen, Magnus Roos, and Jörg Rothe. 2014.

Computational complexity and approximability of social welfare optimization in

multiagent resource allocation. Autonomous agents and multi-agent systems 28, 2

(2014), 256–289.

[31] Trung Thanh Nguyen, Magnus Roos, and Jörg Rothe. 2013. A survey of ap-

proximability and inapproximability results for social welfare optimization in

multiagent resource allocation. Annals of Mathematics and Artificial Intelligence

68, 1 (01 Jul 2013), 65–90.

[32] Benjamin Plaut and Tim Roughgarden. 2018. Almost envy-freeness with general

valuations. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA). Society for Industrial and Applied Mathematics, 2584–2603.

[33] Sara Ramezani and Ulle Endriss. 2010. Nash SocialWelfare inMultiagent Resource

Allocation. In Agent-Mediated Electronic Commerce. Designing Trading Strategies

and Mechanisms for Electronic Markets, Esther David, Enrico Gerding, David

Sarne, and Onn Shehory (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

117–131.

[34] Amartya Sen. 1970. Collective choice and social welfare. Holden Day, San Fran-

cisco.

[35] Lloyd S Shapley. 1958. Complements and substitutes in the optimal assignment

problem. ASTIA Document (1958).

[36] Takamasa Suzuki, Akihisa Tamura, and Makoto Yokoo. 2018. Efficient allocation

mechanism with endowments and distributional constraints. In Proceedings of

the 17th International Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS). 50–58.


	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Model and definitions
	2.1 Fairness and efficiency criteria
	2.2 Submodular valuations

	3 Submodularity and binary marginal gains
	3.1 Utilitarian optimal and EF1 allocation
	3.2 MNW and Leximin allocation

	4 Assignment valuations with binary gains
	5 Discussion
	References

