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ABSTRACT
We study proportionality in approval-based multiwinner elections

with a variable number of winners, where both the size and identity

of the winning committee are informed by voters’ opinions. While

proportionality has been studied in multiwinner elections with a

fixed number of winners, it has not been considered in the variable

number of winners setting. The measure of proportionality we

consider is average satisfaction (AS), which intuitively measures the

number of agreements on average between sufficiently large and

cohesive groups of voters and the output of the voting rule. First,

we show an upper bound on the AS that any deterministic rule can

provide, and that straightforward adaptations of deterministic rules

from the fixed number of winners setting do not achieve better than

a 1/2 approximation to AS even for large numbers of candidates.

We then prove that a natural randomized rule achieves a 29/32

approximation to AS.

1 INTRODUCTION
We study multiwinner approval-based elections, where a group of

agents, or voters, selects a committee from a set of candidates

based on the agents’ preferences. Each agent expresses her pref-

erences through an approval vote, where she designates a subset

of candidates she approves for the committee, and all votes are

then aggregated to select a winning committee from the pool of

candidates.

Some multiwinner elections include a fixed committee size: vot-

ers must fill exactly k seats on a committee. This is known as the

fixed number of winners (FNW) setting, and there is a large body of

work on the complexity and proportionality of various voting rules

in the FNW setting [1–3, 5, 11, 13, 15]. In contrast, we are interested

in the setting in which there is no a priori fixed committee size,

also known as the variable number of winners (VNW) setting. In

this case, both the size of the committee and the candidates chosen

to sit on the committee are informed by agents’ votes.

We present two examples of settings where VNW elections are

a natural fit; Faliszewski et al. [2017] discuss others.
The first example is a hiring scenario where the number of in-

terviews responds to the quality of candidates. Each member of

a hiring task force rates job candidates and, when many strong

candidates have applied, more interviews will be granted, even if

the number of jobs is limited. The second example is Hall of Fame

balloting, where applicants are selected if they are deemed to be of

a certain quality. For instance, in Major League Baseball, players

are only inducted into the Hall of Fame if at least 75% of the voters
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approve them, resulting in class sizes that fluctuate based on the

perceived qualities of eligible candidates each year.

In both of these examples (and, indeed, in any multiwinner elec-

tion), it is important to ensure that the selected alternatives are

chosen in a proportional manner. For instance, when screening

candidates for a job interview, it may be important that all divisions

in the company are satisfied with at least some of the candidates

that made it past the initial screening process. In other words, if a

large division of the company pushes for one subset of candidates

A and a small division of the company pushes for another (disjoint)

subset of candidates B, the set of candidates that progress past the
screening phase should contain representatives from both A and B.

In order to study proportionality in FNW elections, researchers

have proposed the axioms of justified representation (JR), propor-

tional justified representation (PJR), extended justified representa-

tion (EJR), and average satisfaction (AS) [2, 13], which capture the

intuition that all sufficiently large groups that agree on sufficiently

many candidates should achieve somemeasure of satisfaction. How-

ever, to our knowledge, we are the first to study representation in

VNW elections.

Our Contributions: Ourmain research goal is to study proportion-

ality in multiwinner elections with a variable number of winners.

In particular, we study the proportionality measure of average sat-

isfaction (AS) and show that there is a separation between the

performance of deterministic and randomized voting rules.

As our first contribution, we develop a framework for thinking

about proportionality in VNW elections. Previous work on pro-

portionality in FNW elections is largely based on the concept of

justified representation (and extensions thereof). However, as we

discuss in Section 3, JR-based notions of proportionality are less

compelling in VNW elections than in FNW elections. Therefore, we

instead base our approach on the concept of average satisfaction,

which is arguably a more robust version of justified representation.

Second, in Section 4, we consider the proportionality guarantees

of deterministic rules in the VNW setting. We extend three existing

deterministic rules for the FNW setting to the VNW setting, and

show that these rules do not guarantee good approximations to

average satisfaction. We also prove upper bounds on the level of

average satisfaction that any deterministic rule can provide.

Finally, in Section 5, motivated by the shortcomings of deter-

ministic rules, we turn our attention to randomized rules and show

that a natural randomized rule provides a good approximation to

average satisfaction.

Related Work
There is a significant body of work studying proportionality in

FNW elections. As mentioned above, Aziz et al. [2017] put forward
the compelling axiom of justified representation (JR), as well as a

stronger version of this axiom, extended justified representation

https://doi.org/doi
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(EJR) to capture the notion that any sufficiently large and cohesive

group of voters deserves some measure of representation in the

elected committee. This idea was built upon by Sánchez-Fernández

et al. [2017], who introduced the intermediate axiom of propor-

tional justified representation (PJR), a relaxation of EJR that is more

stringent than JR.

Average satisfaction (AS) was first defined by Sánchez-Fernández

et al. [2017]. In this paper, they studied the average satisfaction

guaranteed by extended justified representation (EJR). Further work

by Aziz et al. [2018] showed that Proportional Approval Voting

(PAV) guarantees a level of average satisfaction that implies EJR.

Additionally, Skowron et al. [2017a] extend the notion of average

satisfaction to the context of complete rankings as opposed to

committee selection. Further work by Skowron [2018] studies the

proportionality degree of various multiwinner rules by considering

the average satisfaction of all groups of a certain size.

There is also a significant body of work studying VNW elections;

however, to the best of our knowledge, none of these works consider

proportionality. Kilgour [2016] proposes a multitude of rules for

VNW elections; however, none of the proposed VNW rules are pro-

portional. Fishburn and Pekeč [2004] study threshold approaches

to committee selection, which are VNW rules in the sense that

the size of the selected committee depends on the approval votes.

However, threshold approaches are also not proportional. Addition-

ally, the Borda Mean Rule, which was characterized by Peters and

Brandl [2019] and also studied by Duddy et al. [2016], can be seen

as a VNW rule with approval votes, but is also not proportional. Fi-

nally, Faliszewski et al. [2017] study the computational complexity

of various VNW rules, but do not consider proportionality in their

analysis.

2 PRELIMINARIES
Let N = {v1, . . . ,vn } be a set of n voters and C = {c1, . . . , cm }
be a set of m candidates. For every voter vi , denote by Ai ⊆ C
the set of candidates that are approved by vi . A preference profile

A = {A1, . . . ,An } is the set of all voter preferences Ai .
A variable number of winners (VNW) voting rule f takes as

input a preference profile A and outputs some set of candidates

f (A) ⊆ C . Note that we allow f (A) = ∅ or f (A) = C . We will also

consider randomized VNW voting rules that output a distribution

over sets of candidates.

Throughout this paper, we will denote byW the set of candidates

included on the committee, and we will denote by C \W the set of

candidates who were excluded from the committee.

We say that a group of voters V ⊆ N is ℓ-large if |V | ≥ ℓ · nm ,

and ℓ-cohesive if | ∩i ∈V Ai | + | ∩i ∈V C \Ai | ≥ ℓ. We will also say

that a group of voters V agrees on a candidate c j if c j ∈ Ai for all
i ∈ V or c j < Ai for all i ∈ V . Otherwise, we say that V disagrees
on c j .

In our work, we consider a different measure of representation

than in the FNW setting. In the FNW setting, voters derive utility

from the number of their approved candidates who were elected

to the committee. However, this definition does not make sense in

the VNW setting because then a rule could maximally satisfy all

voters by including all candidates on the committee. Therefore, we

assume that voters derive utility from agreeing with the placement

of candidates either on the committee or not on the committee. For

instance, in an election with two candidates, c1 and c2, if a voter

i has approval set Ai = {c1} (i.e., she approves c1 and disapproves

c2), then she receives one unit of utility for the output committee

{c1, c2} because she agrees with the inclusion of c1 but disagrees

with the inclusion of c2.

With this in mind, the following definition of average satisfaction

is adapted from the definition of Sánchez-Fernández et al. [2017] in
the FNW setting.

Definition 2.1. Given a set of candidatesW ⊆ C , the average
satisfaction of a group of voters V ⊆ N is

avsW (V ) =
1

|V |

∑
i ∈V

( |Ai ∩W | + |(C \Ai ) ∩ (C \W ) |).

We can now define AS in the VNW setting. The intuition behind

the following definition is that any sufficiently large and cohesive

group of voters deserves to be adequately represented on average,
which is a departure from justified representation-based axioms that

have been studied in the FNW setting. Intuitively, JR-like notions

of proportionality only require that some member of each cohesive

group is represented to some extent, whereas average satisfaction

requires all members of each cohesive group to be represented

simultaneously (at least on average).

Definition 2.2. A set of candidatesW ⊆ C satisfies α -AS if, for all
ℓ-large and ℓ-cohesive groups of voters V ⊆ N , avsW (V ) ≥ α · ℓ
for all ℓ ∈ [m]. For brevity, we refer to the special case of 1-AS as

AS.

The following example demonstrates cohesiveness and average

satisfaction.

Example 2.3. Consider the following profile with n = 8 voters,

v1, . . . ,v8, andm = 4 candidates, c1, . . . , c4, with preferences

A1 = A2 = {c1, c2, c3, c4} A6 = {c2, c3}

A3 = A4 = {c1, c2} A7 = {c3}

A5 = {c1, c3} A8 = {c4}.

Now, consider the outputW = {c4}. Note that each voter agrees

with the output on the placement of at least one candidate, so for

any 1-large and 1-cohesive group V(1) (i.e., a group of 1 · nm = 2

voters who agrees on the placement of 1 candidate), avsW (V(1) ) = 1.

Furthermore, note that there is only one 2-large and 2-cohesive

group of voters: v1, v2, v3, and v4 agree on the placement of c1 and

c2, but disagree on the placement of c3 and c4, so they constitute

a 2-large group of voters who agree on 2 candidates. Let V(2) =
{v1,v2,v3,v4}. Note thatavsW (V(2) ) = 1 because eachv ∈ V agrees

withW on exactly one placement, but because this group of voters

is 2-large and 2-cohesive, we see thatW only satisfies 1/2-AS in

this scenario.

Additionally, we straightforwardly extend the following deter-

ministic multiwinner rules from the FNW setting to the VNW

setting.

Proportional Approval Voting (PAV):. Under the PAV rule [17],

voter i derives utility Hk = 1+ 1/2+ · · ·+ 1/k from a committeeW
and unchosen alternativesC \W if the total number of agreements

between Ai andW plus the total number of agreements between
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C\Ai andC\W is k ; i.e., if voter i agrees with a total of k placements

of candidates in the output. The goal of PAV is to maximize the sum

of all voters’ utilities, and thus PAV outputs the subsetW ⊆ C with

highest PAV-score.

Sequential Phragmén (seq-Phragmén): The seq-Phragmén rule [5]

is a sequential variant of a class of rules called Phragmén’s meth-

ods, which select committees such that the “load” incurred by all

members of the committee is distributed as evenly among voters

as possible.
1
Each candidate carries a load of one unit, and this

load is distributed among voters who agree with the placement

of this candidate in either the included set or excluded set. The

seq-Phragmén rule proceeds iteratively by, in each round, placing

the candidate that results in the smallest increase in the maximal

load of any voter.

Let x
(t )
i denote the load of voter i at time t , and let s (t ) denote

the maximal voter load at time t . All voters start out with no load.

Furthermore, let Nj = {i ∈ N : c j ∈ Ai } represent the set of voters
that approve of candidate c j . The maximal voter load if, on the

t + 1
st

placement, candidate c j is included in the committee is

s (t+1) (c j ) =
1 +

∑
i ∈Nj x

(t )
i

|Nj |
,

and the maximal voter load if candidate c j is excluded from the

committee is

s (t+1) (c̄ j ) =
1 +

∑
i ∈C\Nj x

(t )
i

|C \ Nj |

because the load is distributed so as to equalize the loads of all voters

who agree with the placement of c j . At each step t , seq-Phragmén

places the candidate c j that minimizes min(s (t ) (c j ), s
(t ) (c̄ j )) and

updates voter loads accordingly: in the case that c j is included in

the committee,

x
(t+1)
i =




s (t+1) (c j ) if i ∈ Nj

x
(t )
i otherwise,

and in the case that c j is excluded from the committee,

x
(t+1)
i =




s (t+1) (c̄ j ) if i ∈ C \ Nj

x
(t )
i otherwise.

This rule proceeds until all candidates have been placed, and then

returns the included and excluded candidates.

Rule X:. Rule X [11] allocates each voter a budget of one dollar,

which they then spend on placing candidates either in the included

set or excluded set. Placing a candidate costs n/m dollars in total,

and the set of voters who agree on the placement of this candidate

must be able to collectively afford the placement price. The rule

starts with an empty included setW and an empty excluded set W̄ ,

and it iteratively places candidates in either committee as follows.

Let bi (t ) be the amount of money that voter i has remaining at

the beginning of the t th step; i.e., bi (1) = 1 for all voters vi ∈ N .

At the t th step, we say that a candidate c <W ∪ W̄ is q-affordable

1
For a survey, see [9, 12].

for some q ≥ 0 if

max
*.
,

∑
i :c ∈Ai

min(q,bi (t )),
∑

i :c ∈C\Ai

min(q,bi (t ))
+/
-
≥ n/m.

In other words, candidate c is q-affordable if it can be placed in

either the included or excluded set while voters who approve or

disapprove of c each pay a maximum of q dollars. If no candidate

is q-affordable for any q ≥ 0, then the rule stops and returns the

current set of included candidatesW and places the rest of the

candidates arbitrarily.
2
Else, the rule places the candidate which

is q-affordable for the minimum value q in either the approved or

disapproved committee. Each voter who agrees with this place-

ment has min(q,bi (t )) deducted from their budget, and the process

continues.

3 JUSTIFIED REPRESENTATION IN VNW
ELECTIONS

In order to build intuition about why we focus on AS instead of

(E/P)JR, we begin by defining JR, PJR, and EJR for VNW elections.

In each case, the definition is a straightforward adaptation of the

corresponding definition for the FNW setting, where we intuitively

replace “agreement with members on the committee” with “agree-

ment on the placement of each candidate.” We slightly overload

notation—namely, JR, EJR, and PJR—from the FNW setting in the

following definitions.

Definition 3.1 (JR). Consider a ballot profileA. A set of candidates

W ⊆ C satisfies justified representation (JR) with respect to A if, for

all sets of 1-large and 1-cohesive voters N ∗, there exists an i ∈ N ∗

such that |Ai ∩W | + |(C \Ai ) ∩ (C \W ) | ≥ 1.

Definition 3.2 (PJR). Consider a ballot profile A. A set of candi-

datesW ⊆ C satisfies proportional justified representation (PJR) if,
for all sets of ℓ-large and ℓ-cohesive voters N ∗, |

⋃
i ∈N ∗ Ai ∩W | +

|(
⋃
i ∈N ∗ (C \Ai )) ∩ (C \W ) | ≥ ℓ for all ℓ ∈ [m].

Definition 3.3 (EJR). Consider a ballot profile A. A set of candi-

datesW ⊆ C satisfies extended justified representation (EJR) with
respect to A if, for all sets of ℓ-large and ℓ-cohesive voters N ∗, there
exists an i ∈ N ∗ such that |Ai ∩W | + |(C \Ai ) ∩ (C \W ) | ≥ ℓ for
all ℓ ∈ [m].

The following example illustrates these definitions, and provides

intuition about why PJR is less compelling in the VNW setting than

in the FNW setting.

Example 3.4. Consider the same profile as in Example 2.3 with

n = 8 voters, v1, . . . ,v8, andm = 4 candidates, c1, . . . , c4.

Again, consider the outputW = {c4}.W satisfies JR because

each voter agrees with the output on the placement of at least one

candidate. Furthermore,W satisfies PJR because, on the only 2-large

and 2-cohesive group of voters, {v1,v2,v3,v4}, two of them agree

with the placement of c3 and two of them agree with the placement

of c4. However,W does not satisfy EJR because no voter in the

coalition agrees with two placements ofW—they all agree with

exactly one placement.

2
Other natural options are to include or exclude all unplaced candidates; we note

that our results about Rule X do not depend on the exact choice of what is done with

unplaced candidates.
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We also study the relationship between natural extensions of

FNW rules (namely, PAV, seq-Phragmén, and Rule X) and different

notions of justified representation in the VNW setting.

Lemma 3.5. PAV satisfies PJR.

Proof. Assume that there exists an ℓ-large, ℓ-cohesive coalition,

G, that agrees on ℓ′ ≥ ℓ candidates CG , but only receives k < ℓ
satisfaction from the output W . We will show that it is always

possible to find a new outputW ′ with a higher PAV score than

W for which G is (k + 1)-satisfied. In particular, we show that

there exists aW ′ that differs fromW only on the placement of

one candidate (i.e.,W ′ includes one additional candidate that was
previously excluded fromW or excludes one additional candidate

that was previously included inW ) that satisfies these properties.

LetW agree with the placement of β < ℓ of the candidates that
G agrees upon. Note that β + (m − ℓ′) = k because, according to

the definition of PJR,G derives satisfaction from all candidates they

disagree on, which means that β + (m − ℓ′) < ℓ and therefore

ℓ + ℓ′ > β +m.

In order to argue that there exists aW ′ that satisfies (a) and (b),

we examine what happens if we change the placement of each of

the ℓ′ − β candidates that G agrees upon, butW does not agree

with G on. Changing the placement of each of these candidates

clearly results in (k + 1)-representation for G, and we will show

that, on average, changing the placement of one of these candidates

increases the PAV score. We let ∆PAV (G ) denote the total change
in PAV score for voters in G and ∆PAV (N \ G ) denote the total

change in PAV score for voters in N \ G, and analyze these two

quantities separately.

For each voter inG , her PAV score increases by at least 1/(k+1) ≥
1/ℓ on each of the ℓ′ − β possible changes because each member is

at most k-satisfied. Furthermore, there are at least ℓn/m voters in

G. Therefore,

∆PAV (G ) ≥
ℓn

m
·

1

ℓ
.

For each voter vi in N \ G, let vi agree with the placement

of xi candidates in CG and yi candidates in C \ CG for a total of

xi + yi agreements withW . Initially, the PAV score of vi is Hxi+yi .

However, the average PAV score of each vi in N \G over all ℓ′ − β
possible changes is

xiHxi+yi−1 + ((ℓ′ − β ) − xi )Hxi+yi+1

ℓ′ − β
,

so the average change in PAV score for each vi not in G is

xiHxi+yi−1 + ((ℓ′ − β ) − xi )Hxi+yi+1

ℓ′ − β
− Hxi+yi

=
1

ℓ′ − β

(
(ℓ′ − β )Hxi+yi−1 + (ℓ′ − β − xi )

(
1

xi + yi
+

1

xi + yi + 1

))
−
ℓ′ − β

ℓ′ − β
Hxi+yi

=
1

ℓ′ − β

(
−xi

xi + yi
+
ℓ′ − β − xi
xi + yi + 1

)
>

1

ℓ′ − β
·
−xi

xi + yi

>
−1

ℓ′ − β
.

Because there are at most n − ℓn/m voters in N \G, we have

∆PAV (N \G ) ≥

(
n −
ℓn

m

) (
−

1

ℓ′ − β

)
.

Therefore, the total change in PAV score over all ℓ′ − β potential

changes is

∆PAV (G ) + ∆PAV (N \G ) ≥
ℓn

m
·

1

ℓ
+

(
n −
ℓn

m

) (
−

1

ℓ′ − β

)
=

n

m
−

nm − ℓn

m(ℓ′ − β )

=
nℓ′ − nβ

m(ℓ′ − β )
−

nm − ℓn

m(ℓ′ − β )

=
n(ℓ + ℓ′ − β −m)

m(ℓ′ − β )

> 0,

where the last step follows because ℓ + ℓ′ > β +m and ℓ′ > β .
Therefore, we have shown the existence ofW ′ with higher PAV

score, which is a contradiction.

□

Lemma 3.6. Seq-Phrágmen satisfies PJR.

Proof. We consider any arbitrary ℓ-cohesive groupG and prove

that, after placing m − k candidates, G must be at least (ℓ − k )-
represented. Therefore, after placing allm candidates, G must be

ℓ-represented.

We proceed by induction. As our base case, afterm−ℓ placements,

G must be at least ℓ − ℓ = 0 represented, which vacuously holds

true.

For the induction step, assume that afterm − k − 1 placements,

G is ℓ − k − 1 satisfied. Call the candidate that is placed on the

(m − k )th step c . If G does not agree on c , then no matter how c is
placed, G will receive ℓ − k representation afterm − k placements.

We now consider the case where G agrees on c . WLOG, assume

that every member in G approves c .
Because G is ℓ − k − 1 satisfied, the total load on G is at most

ℓ − k − 1. This means that N \G , which is of size at most n − ℓn/m
voters, has total load at least (m−k−1)−(ℓ−k−1) =m−ℓ. Therefore,

there exists a voter in N \G with load at least
m−ℓ

n−ℓn/m =m/n.

Now, there are two subcases: (a) everyone in G has load at most

n/m; and (b) there exists a voter inG with load strictly greater than

n/m.

In subcase (a), it is possible to approve c without increasing the

maximal voter load. This is because the total load on the ℓ-cohesive

group will be at most ℓ − k , and the average voter load among

members of G is at most

ℓ − k

ℓn/m
≤
ℓ

ℓn/m
=
m

n
.

This means that it is possible to redistribute the load such that no

one in G has weight more thanm/n, and therefore, seq-Phragmén

will approve c , leading to (ℓ − k )-representation for G afterm − k
placements.

In subcase (b), return to the first step at which any voter in G’s
load exceededm/n. Call this voter vi . Now, replace that allocation
by approving c instead. After approving c , the total load on G is at
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most ℓ − k , and therefore the average voter load among members

of G at this point in time is at most

ℓ − k

ℓn/m
≤
ℓ

ℓn/m
=
m

n
.

This means that it is possible to redistribute the load such that no

voter in G has weight more thanm/n, a contradiction to the order

in which seq-Phragmén decides how to place candidates. Therefore,

this subcase cannot occur.

□

Lemma 3.7. Rule X satisfies PJR but not EJR.

Proof. RuleX satisfies PJR:Consider any ℓ-large and ℓ-cohesive
groupG of size ℓn/m. LetG agree on ℓ′ ≥ ℓ candidatesCG . WLOG,

let G approve all candidates in CG .
We claim that, by the end of the algorithm,G will have purchased

ℓ − (m − ℓ′) candidates in CG . Because G derives representation

from any candidate in C \CG , this suffices to satisfy PJR.

We now case on the number of candidates in C \ CG that are

placed by Rule X.

If no candidates in C \ CG are placed, then, at best, N \G can

only afford to exclude m − ℓ candidates in CG before they run

out of money, leaving ℓ′ − (m − ℓ) = ℓ − (m − ℓ′) candidates for
G to include. Because nothing in C \ CG was purchased, and all

elements in CG that were purchased were excluded, each voter in

G still has her entire budget left, and collectively G can afford to

place ℓ > ℓ − (m − ℓ′) candidates. Therefore, G can purchase the

ℓ − (m − ℓ′) remaining candidates in CG .
Now, consider the case where some candidates in C \ CG are

placed. Note that when candidates in C \ CG are placed, they

must cost at most 1/ℓ per voter because otherwise Rule X will

approve a candidate in CG , which costs each member of G at most

(n/m)/(ℓn/m) = 1/ℓ. Therefore, for each of them − ℓ′ elements in

C \CG , each voter vi inG spends at most 1/ℓ, and therefore retains

at least 1− (1/ℓ) (m−ℓ′) = 1−m/ℓ+ℓ′/ℓ budget. Furthermore, note

that, again, N \G can only afford to excludem− ℓ candidates inCG ,
leaving ℓ− (m−ℓ′) candidates inCG forG to include. However, note

that it costs
ℓ−(m−ℓ′) ·(n/m)

ℓn/m = (1/ℓ) (ℓ − (m − ℓ′)) = 1−m/ℓ + ℓ′/ℓ

per voter inG to place ℓ − (m − ℓ′) candidates in CG and that each

voter v ∈ G has at least this amount of money left. This ensures

that they will be able to purchase ℓ − (m − ℓ′) candidates in CG ,
and therefore Rule X satisfies PJR.

Rule X does not satisfy EJR: Consider the following profile

with n = 12 andm = 6 with the following preferences.

A1 = . . . = A4 = {c1, c2, c5}

A5 = . . . = A8 = {c1, c2, c6}

A9 = A10 = {c3, c4, c5}

A11 = A12 = {c3, c4, c6}.

The first four actions of Rule X will be to include c1 and c2

and exclude c3 and c4. After these placements, voters v1, . . . ,v8

will have no money left, and voters v9, . . . ,v12 will have their

entire budgets left. Now, Rule X will perfectly spend the money

of v9, . . . ,v12 over candidates c5 and c6 (either including both or

neither) and the coalition of voters v9, . . . ,v12 will not satisfy EJR

because each voter in this coalition is represented exactly once, even

though someone in this coalition deserves two representatives. □

Notably, in the VNW setting, JR and PJR are less compelling

notions of representation than in the FNW setting. In particular,

whenever an ℓ-cohesive group of voters does not agree on the

placement of a particular candidate, PJR automatically counts that

candidate for free toward the group’s representation quota, since

at least one member of the group agrees with the candidate’s place-

ment. In other words, any disagreement within an ℓ-cohesive group

results in partial representation, no matter the outcome of the elec-

tion. This is particularly problematic for JR: any 1-large, 1-cohesive

group of voters that disagrees on even a single candidate will never

be witness to a violation of JR.

Lemma 3.7 is also notable because Rule X satisfies EJR for FNW

elections, but the straightforward extension of this rule does not

satisfy EJR for VNW elections, demonstrating a qualitative differ-

ence between proportionality properties in the FNW and VNW

settings. It is still an open question whether or not PAV and seq-

Phragmén satisfy EJR for VNW elections; we leave this for future

work. Additionally, we note that proofs of (E/P)JR in the VNW

setting are more complicated than in the FNW setting. In particular,

the proofs from the FNW setting do not easily carry over to the

VNW setting because of the different definitions of voter utility—it

is more difficult to argue about agreements with the placement of

candidates than to argue about the number of approved candidates

on the winning committee.

4 DETERMINISTIC RULES
We begin by showing an upper bound on the level of average

satisfaction that deterministic rules can provide.

Theorem 4.1. No deterministic rule satisfies (m−1

m + ϵ )-AS for
anym and any ϵ > 0.

Proof. First, suppose thatm is odd. Then set n = 2, with A1 =

{c1, . . . , cm } and A2 = ∅. Without loss of generality, suppose that

the outputW is such that |W | > m
2
. But then voterv2 is an

m
2
-large,

m
2
-cohesive group with average satisfaction at most

m−1

2
, which

yields an (m−1

m )-AS approximation.

Next, supposem is even, and set n = 4m. Consider the profile

A1 = . . . = Am = {c1, . . . , cm }

Am+1 = . . . = A2m = {c1, . . . , cm−1}

A2m+1 = . . . = A3m = {cm }

A3m+1 = . . . = A4m = {}.

We consider two cases. In the first case, suppose that the output

W has |W | ≥ m
2
+ 1. Consider the

m
2
-large,

m
2
-cohesive group of

voters V = {v2m+1, . . . ,v4m }. We have

avsW (V ) ≤
1

2m
(m(m − |W |) +m(m − |W | + 1)) ≤

m − 1

2

which yields an (m−1

m )-AS approximation.

In the second case, suppose that the outputW has |W | = m
2
. Sup-

pose without loss of generality that cm <W . Then again consider

V = {v2m+1, . . . ,v4m }. We have

avsW (V ) ≤
1

2m

(
m

(m
2

− 1

)
+m

(m
2

))
=
m − 1

2



AAMAS’20, May 2020, Auckland, New Zealand Rupert Freeman, Anson Kahng, and David M. Pennock

again yielding an (m−1

m )-AS approximation. This completes the

proof. □

Theorem 4.1 leaves open the possibility that there exists a deter-

ministic rule that provides quite good average satisfaction guaran-

tees when the number of candidates is large. Finding such a rule or

lowering the upper bound is an interesting open question. However,

we show that none of the natural adaptations of FNW rules that

we consider is able to guarantee better than a 0.5 approximation to

AS even whenm is large.

Theorem 4.2. PAV does not satisfy a 0.5 + ϵ approximation to AS,
for any ϵ > 0 form ≥ 2.

Proof. Consider a profile with n = 2m voters with preferences

A1 = . . . = Am−1 = {c1, . . . , cm }

Am = . . . = A2m−2 = {c1, . . . , cm−1}

A2m−1 = {cm }

A2m = {}.

This profile is symmetric in cm , so without loss of generality sup-

pose that cm is included. When all candidates are included, the PAV

score of the committee is

1 + (m − 1)Hm−1 + (m − 1)Hm . (1)

Suppose instead that somek−1 < m−1 of the candidates c1, . . . , cm−1

are included. The PAV score of the committee is

Hm−k + Hm−k+1
+ (m − 1)Hk−1

+ (m − 1)Hk . (2)

Subtracting Equation 2 from Equation 1 yields at least

≥
(m − 1) (m − k )

m − 1

− Hm−k +
(m − 1) (m − k )

m
+ 1 − Hm−k+1

≥ m − k − (m − k ) +
m − k

2

−
1

2

− . . . −
1

m − k + 1

≥ 0,

where the first inequality holds because Hm−k ≤ m −k and
m−1

m ≥
1

2
form ≥ 2.

Therefore, the highest PAV score is achieved when all candidates

c1, . . . , cm−1 are included. But then the groupN
∗ = {v2m−1,v2m } is

1-large and 1-cohesive but is only satisfied 0.5 times on average. □

Theorem 4.3. seq-Phragmén does not satisfy a 0.5 + ϵ approxi-
mation to AS, for any ϵ > 0 form ≥ 2.

Proof. Consider the same profile as in the proof of Theorem 4.2.

It is easy to check that seq-Phragmén begins by including candidates

c1, . . . , cm−2, after which each voter of the first and second type

has load
m−2

2(m−1) . In the (m − 1)-th round, the algorithm has four

choices: to include or exclude cm−1, or to include or exclude cm .

Including cm−1 results in a load of
m−1

2(m−1) =
1

2
on votersv1, . . . ,v2m−2.

Excluding cm−1 results in a load of
1

2
to voters v2m−1 and v2m . In-

cluding cm (which is symmetric to excluding cm ) results in a load

x to voters v1, . . . ,vm−1,v2m−1, where x is the solution to

mx − (m − 1)
m − 2

2(m − 1)
= 1,

which yields a solution of x = 1

2
.

The algorithm is therefore indifferent between all possible ac-

tions; breaking ties adversarially yields the inclusion of cm−1. Re-

gardless of the inclusion or exclusion of candidate cm , the group

N ∗ = {v2m−1,v2m } is 1-large and 1-cohesive but is only satisfied

0.5 times on average. □

We note that the dependence on tiebreaking in the proof of

Theorem 4.3 can be removed by taking multiple copies of the profile

used in the proof and changing the preference of a single voter.

Theorem 4.4. Rule X does not satisfy a 0.5 + ϵ approximation to
AS, for any ϵ > 0 form ≥ 3.3

Proof. Consider the same profile used in the proof of Theo-

rem 4.2. Rule X begins by including each of candidates c1, . . . , cm−1.

Each of these candidates costs
n

m (2m−2) =
1

m−1
for each voter

v1, . . . ,v2m−2. In comparison, placing the last candidate at any

point costs n/2 voters
n/m
n/2

= 2

m , which is a greater cost than

1

m−1
whenm ≥ 3. Including each of c1, . . . , cm−1 therefore costs

v1, . . . ,v2m−2 one dollar each. Regardless of the placement of cm ,

the 1-large and 1-cohesive group of voters N ∗ = {v2m−1,v2m } is

satisfied only 0.5 times on average. □

5 RANDOMIZED RULES
We now turn our attention to randomized rules in order to achieve

better average satisfaction guarantees. A randomized rule is one

that outputs a distribution over committees rather than a single

committee, and our approximation guarantee will hold in expecta-

tion over the possible committees. We consider a simple and natural

randomized rule that, for each candidate c j , includes c j in the set

of winnersW with probability equal to the fraction of the voters

who approve j.

Definition 5.1. Given a preference profile A, the Proportional
Random Rule (PRR) independently adds each c j ∈ C to the winning

committeeW with probability

pj =

���{vi ∈ N s.t. c j ∈ Ai }
���

n
.

Theorem 5.2. PRR satisfies 29/32-AS in expectation for anym ≥
1.

In the proof of Theorem 5.2, it will be helpful to think about the

effect that an individual candidate has on the satisfaction of a group

G. For an outcomeW , a group of voters G, and a candidate c j , we
say that the contribution from c j to the average satisfaction of G is

avsc j (G ) = |{i : c j ∈ Ai }|/|G | if c j ∈ W or avsc j (G ) = |{i : c j <
Ai }|/|G | if c j <W . Note that avsW (G ) =

∑m
j=1

avsc j (G ).

Proof. We prove the result in two steps. First, we show that

when ℓ ≤ m/3, PRR achieves an average satisfaction of ℓ; second,

we show that when ℓ > m/3, PRR achieves an average satisfaction

of (29/32)ℓ.

3
Whenm = 2, we know from Theorem 4.1 that no deterministic rule, including Rule

X, can achieve better than a 0.5 approximation.
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Case 1: ℓ ≤ m/3. Consider an ℓ-cohesive group,G , of size ℓn/m,
4

and a candidate c j . Let kA = |{vi ∈ G : c j ∈ Ai }| denote the number

of voters in G who approve c j , and kD = ℓn/m − kA denote the

number of voters inG who disapprove c j . Without loss of generality,

let kA ≤ kD . Further, suppose that x of the voters in N \G approve

c j and y = n − ℓn/m − x voters in N \G disapprove c j .
The expected contribution from c j to the average satisfaction of

G is

E[avsc j (G )] =
kA
|G |

(
kA + x

n

)
+
kD
|G |

(
kD + y

n

)
.

Because kA ≤ kD and x + y is fixed, this expression is minimized

when y = 0. We therefore have

E[avsc j (G )] =
kA
|G |

(
kA + n − ℓn/m

n

)
+
kD
|G |

(
kD
n

)
=

1

n |G |

(
|G |2 + kA (n − ℓn/m − 2kD )

)
≥
|G |

n
=
ℓ

m
,

where the inequality holds because kD ≤ ℓn/m by definition, and

we can assumem ≥ 3 because ℓ must be at least 1. So, in both the

case where G agrees on c j and the case where G disagrees on c j ,
the expected contribution of c j to the average satisfaction of G is

at least
ℓ
m . Summed over all candidates, the average satisfaction of

G is at least ℓ, as required.

Case 2: ℓ > m/3. Consider an ℓ-cohesive group, G, of size ℓn/m,

and a candidate c j . Let kA = |{vi ∈ G : c j ∈ Ai }| denote the

number of voters inG who approve c j , and kD = ℓn/m−kA denote

the number of voters in G who disapprove c j . Without loss of

generality, let kA ≤ kD . As in the previous case, it is easy to show

that the expected contribution from c j to G’s average satisfaction
is minimized when all voters in N \G approve c j .

We therefore have that

[Eavsc j (G )] =
kA
|G |

(
kA + n − ℓn/m

n

)
+
kD
|G |

(
kD
n

)
.

Substituting kD = ℓn/m − kA, taking the derivative with respect

to kA, and setting to 0 yields

1

n
(4kA − 3(ℓn/m) + n) = 0 =⇒ kA =

3ℓn/m − n

4

> 0,

where the inequality follows from the assumption that ℓ > m/3.
Furthermore, the second derivative with respect to kA is 4/n > 0,

and therefore kA = (3ℓn/m − n)/4 is a local minimum.

The expected contribution from c j to G’s average satisfaction
can therefore be as low as

[Eavsc j (G )] =
kA
|G |

(
kA + n − ℓn/m

n

)
+
kD
|G |

(
kD
n

)
=
−ℓ

8m
+

3

4

−
m

8ℓ
.

We also note that, because G is ℓ-cohesive, there exist at least ℓ

candidates that G agrees on. Each of these candidates has

avsc j (G ) ≥ |G |/n ≥ ℓ/m,

4
It is sufficient to consider groups of size exactly ℓn/m because if there exists an

ℓ-cohesive larger group that violates the desired guarantee, there must exist a subset

of size ℓn/m that also violates the guarantee.

where the first inequality follows fromG being ℓ-cohesive and the

second from G being ℓ-large.

Summing over the contributions of all candidates, the average

satisfaction of G is at least

ℓ
ℓ

m
+ (m − ℓ)

(
3

4

−
ℓ

8m
−

m

8ℓ

)
=

(
9ℓ

8m
−

m2

8ℓ2
−

7

8

+
7m

8ℓ

)
ℓ. (3)

Our goal is to lower bound the term in parentheses by
29

32
, thus

providing the desired approximation guarantee. Setting ℓ = αm,

where α ∈ ( 1

3
, 1), and differentiating with respect to α yields

d

dα

(
9α

8

−
1

8α2
−

7

8

+
7

8α

)
=

9

8

+
2

8α3
−

7

8α2
.

Setting equal to 0 yields

9α3 − 7α + 2 = (1 + α ) (3α − 2) (3α − 1) = 0,

so the only critical point in the interval α ∈ (1/3, 1] is α = 2/3. It is

easy to check that the second derivative is positive at α = 2/3, so

average satisfaction is minimized at this point. Plugging ℓ = 2m/3
into Equation 3 yields a 29/32 approximation to AS, as desired. □

Guided by the proof of Theorem 5.2, we show that the bound is

tight.

Theorem 5.3. PRR does not satisfy (29/32+ϵ )−AS for any ϵ > 0.

Proof. Letm = 3 and n = 12. Consider the profile

A1 = A2 = A3 = A4 = A5 = {c1, c2, c3}

A6 = A7 = A8 = {c1, c2}

A9 = A10 = A11 = A12 = {}.

In particular, note that the first 8 voters form a 2-large and 2-

cohesive group. Then the expected satisfaction of the first five

voters is
2

3
+ 2

3
+ 5

12
and the expected satisfaction of the next three

voters is
2

3
+ 2

3
+ 7

12
. Taking the average yields

29

16
= 29

32
ℓ for ℓ = 2. □

Whether there exists a randomized rule that achieves better than

a 29/32-AS approximation remains an open problem.

6 DISCUSSION
We have initiated the study of representation in approval elections

with a variable number of winners. We believe that this topic, and

the study of VNW elections more generally, deserves further re-

search.

Many open problems remain. In particular, we do not havematch-

ing upper and lower bounds for the average satisfaction guarantees

that can be provided by deterministic and randomized rules. Deter-

mining the existence of rules that satisfy EJR is also an interesting

question; while we have argued that natural extensions of JR and

PJR make less sense for VNW elections than for FNW, EJR remains

a compelling property.

More broadly, we have assumed voters gain utility whenever

they agree with the placement of a candidate. A natural extension

of this model would be one in which voters derive different levels of

utility for an approved candidate being selected and a disapproved

candidate being excluded. Extending our results to this setting

appears nontrivial.
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