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ABSTRACT
We present a methodology to robustly estimate the competitive

equilibria (CE) of combinatorial markets under the assumption that

buyers do not exactly know their valuations for bundle of goods

but can instead only provide noisy samples of them. We first show

tight lower- and upper-bounds on the set of CE, given a uniform ap-

proximation of one market by another. We then develop a learning

framework for our setup, and present two probably-approximately-

correct algorithms capable of learning CE with finite-sample guar-

antees. The first is a baseline that uses Hoeffding’s inequality to

produce a uniform approximation of buyers’ valuations with high

probability. The second leverages a novel connection between the

first welfare theorem of economics and uniform approximations

to adaptively prune value queries when it determines that they

are provably not part of a CE. We experiment with our algorithms

and show that the pruning algorithm is capable of achieving better

estimates than the baseline with far fewer samples.

KEYWORDS
Noisy combinatorial markets; PAC algorithms; First welfare theo-

rem of economics

1 INTRODUCTION
Combinatorial Markets (CMs) are a class of markets in which buyers

are interested in acquiring bundles of goods. Real-world examples

of these markets include: spectrum auctions, of which the 2014

Canadian 700 MHZ raised upwards of $5 billion [21]; allocation of

landing and take-off slots at airports [3]; Internet ad placement [7];

and procurement of bus routes [5].

An outcome of a CM is an assignment of bundles to buyers

together with prices for the goods, dictated by the market maker.

A competitive equilibrium (CE) is an outcome of particular interest

in CMs, and in other well-studied economic models [4, 20]. In a CE,

buyers are utility-maximizing (i.e., they maximize their utilities at

the posted prices) and the market clears, meaning excess supply is

priced at zero.

One of the defining features of CMs is that they afford buyers

the flexibility to express complex preferences over a wide variety

of outcomes, which in turn has the potential to increase market

efficiency. However, the extensive expressivity of these markets

presents challenges for both the market maker and the buyers. With

an exponential number of bundles in general, it is infeasible for

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.),
May 2020, Auckland, New Zealand
© 2020 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

https://doi.org/doi

a buyer to evaluate them all. We thus assume a model of noisy

buyer valuations: e.g., buyers might use approximate or heuristic

methods to obtain value estimates [8]. In turn, the market maker

has to choose an outcome, despite any uncertainty about the buy-

ers’ valuations. We call these markets noisy combinatorial markets
(NCM) to emphasize that buyers do not have direct access to their

values for bundles, but instead can only noisily estimate them.

In this work, we formulate a mathematical model of NCMs. Our

goal is then to design learning algorithms with rigorous finite-

sample guarantees that approximate the competitive equilibria of

NCMs.

Our first result is to show tight lower- and upper-bounds on

the set of CE, given uniform approximations of buyers’ valua-

tions. We then present two learning algorithms. The first one—

Elicitation Algorithm; EA—serves as a baseline. It uses Hoeffding’s

inequality [10] to produce said uniform approximations. Our second

algorithm—Elicitation Algorithm with Pruning; EAP—leverages a

novel connection between the first welfare theorem of economics

and uniform approximations, which enables it to adaptively prune

value queries when it determines that they are provably not part of

a CE.

After establishing the correctness of our algorithms, we evaluate

their empirical performance. Although our methodology is general

enough to apply to any CM, it is well-known that gross substitutes

(GS) is the largest class of valuation functions for which CE are

guaranteed to exist [9, 11]. Since the goal of our methodology is to

learn CE, we focus on GS valuations in our experiments. In particu-

lar, we test our algorithms using synthetic unit-demand valuations,

a class of valuations central to the literature on economics and

computation [14]. We measure the quality of learned CE in noisy

unit-demand markets as compared to the CE of the underlying

market. We find that EAP is capable of exploiting the combinatorial

structure of unit-demand markets, to prune buyers’ valuations for

goods when said goods would never be allocated in a CE, even

without any a priori knowledge of the market’s structure. As a

result, EAP often yields better error guarantees than EA using far

fewer samples.

Related Work. The idea for this paper stemmed from the work on

abstraction in Fisher markets by [12]. There, the authors tackle the

problem of computing equilibria in large markets by creating an

abstraction of the market, computing equilibria in the abstraction,

and lifting those equilibria back to the original market. Likewise, we

develop a pruning criterion which in effect builds an abstraction of

any CM, in which we can then compute the CE, which are provably

also approximate CE in the original market.

Themathematical formalismwe adopt follows that of [17]. There,

the authors propose a mathematical framework for empirical game-

theoretic analysis [22], and algorithms that learn the Nash equilibria
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of so-called simulation-based games [18, 19]. In this paper, we ex-

tend this methodology to market equilibria, and provide analogous

results in the case of CMs. Whereas the basic pruning criterion in

games is straightforward—simply prune dominated strategies—the

challenge in this work was to discover a pruning criterion that

would likewise prune valuations that are provably not part of an

equilibrium.

Another related line of research is concerned with learning valua-

tion functions from data [1, 2, 13]. In contrast, our work emphasizes

learning CE, rather than buyers’ valuations. Indeed, our main con-

clusion is that CE often can be learned from just a subset of buyers’

valuations. In this sense, our work complements other research on

learning valuations, especially when the primary reason for doing

so is to learn CE.

There is also a long line of work on preference elicitation in

combinatorial auctions (e.g., [6]), where the goal is for an auctioneer

to pose value queries in an intelligent order so as to minimize

the computational burden on the bidders, while still clearing the

auction.

Finally, our pruning criterion relies on a novel application of

the first welfare theorem of economics. While prior work [15] has

connected economic theory with algorithmic complexity, this work

connects economic theory with learning theory.

2 MODEL
We write X+ to denote the set of positive values in a numerical set

X including zero. Given an integer k ∈ Z, we write [k] to denote

the first k integers, inclusive: i.e., [k] = {1, 2, . . . ,k}. Given a finite

set of integers Z ⊂ Z, we write 2Z to denote the power set of Z .
A combinatorial market is defined by a set of goods and a set

of buyers. We denote the set of goods by G = [m], and the set of

buyers by N = [n]. We index an arbitrary good by j ∈ G, and an

arbitrary buyer by i ∈ N . A bundle of goods is a set of goods S ⊆ G .
Each buyer i is characterized by their preferences over bundles, rep-
resented as a valuation functionvi : 2

G 7→ R+, wherevi (S) ∈ R+ is
buyer i’s value for bundle S . We assume valuations are normalized

so that vi (∅) = 0, for all i ∈ N . Using this notation, a combinatorial

market—market, hereafter—is a tupleM = (G,N , {vi }i ∈N ).
Given a market M , an allocation S = (S1, . . . , Sn ) denotes an

assignment of goods to buyers, where Si ⊆ G is the bundle of

goods assigned to buyer i . We consider only feasible allocations.

An allocation S is feasible if Si ∩ Sk = ∅ for all i,k ∈ N such

that i , k . We denote the set of all feasible allocations of mar-

ket M by F (M). The welfare of allocation S is defined as w(S) =∑
i ∈N vi (Si ). A welfare-maximizing allocation S∗ is a feasible allo-

cation that yields maximum welfare among all feasible allocations,

i.e., S∗ ∈ argmaxS∈F(M )w(M). We denote byw∗(M) the welfare
of any welfare-maximizing allocation S∗, i.e., w∗(M) = w(S∗) =∑
i ∈N vi (S

∗
i ).

In this paper, we consider only linear and anonymous prices.

Thus, a pricing p = (p1, . . . ,pm ) is an assignment of prices to goods

where pj ∈ R+ is the price assigned to good j. The total price of
bundle S is then given by P(S) =

∑
j ∈S pj . We refer to pair (S, p)

as a market outcome—outcome, for short.

In this paper, we are interested in approximations of one market

by another. We now define a mathematical framework in which

to formalize such approximations. In what follows, whenever we

decorate a marketM , e.g.,M ′, what we mean is that we decorate

each of its components: i.e.,M ′ = (G ′,N ′, {v ′i }i ∈N ′).
It will be convenient to refer to a subset of buyer–bundle pairs.

We use the notation I ⊆ N × 2G for this purpose.

Markets M and M ′ are compatible if G = G ′ and N = N ′.
Whenever a market M is compatible with a market M ′, an out-

come of M is also an outcome of M ′. Given two compatible mar-

kets M and M ′, we measure the difference between them at I as

∥M −M ′∥I = max(i ,S )∈I |vi (S) −v
′
i (S)|. When I = N × 2G , this

difference is precisely the infinity norm. Given ε > 0, M and M ′

are called ε-approximations of one another if ∥M −M ′∥∞ ≤ ε .

Definition 2.1 (Competitive Equilibrium). Given a marketM , an

outcome (S, p) is a competitive equilibrium (CE) if:

(UM) ∀i ∈ N ,T ⊆ G : vi (Si ) − P(Si ) ≥ vi (T ) − P(T )
(MC) If j < ∪i ∈N Si then pj = 0

Definition 2.2 (Approximate Competitive Equilibria). Let ε > 0.

An outcome (S, p) is a ε-competitive equilibrium (ε-CE) if it is a CE
in which UM holds up to ε :
(ε-UM)∀i ∈ N ,T ⊆ G : vi (Si ) − P(Si ) + ε ≥ vi (T ) − P(T )

For α ≥ 0, we denote by CEα (M) the set of all α-approximate

CE ofM , i.e., CEα (M) = {(S, p) : (S, p) is a α-approximate CE of

M}. Note that CE0(M) is the set of (exact) CE of marketM , which

we denote CE(M).

Theorem 2.3 (Competitive Eqilibrium Approximation). Let
ε > 0. IfM andM ′ are compatible markets such that ∥M −M ′∥∞ ≤ ε ,
then CE(M) ⊆ CE2ε (M ′) ⊆ CE4ε (M).

Proof. We prove the following: CEα (M) ⊆ CEα+2ε (M
′), for

α ≥ 0. This result then implies CE(M) ⊆ CE2ε (M
′) when α = 0;

likewise, it (symmetrically) implies CE2ε (M
′) ⊆ CE4ε (M) when

α = 2ε .
LetM andM ′ be compatible markets s.t. ∥M −M ′∥∞ ≤ ε . Sup-

pose (S, p) is a α-competitive equilibrium ofM . Our task is to show

that (S, p), interpreted as an outcome ofM ′, is a (α+2ε)-competitive

equilibrium ofM ′.
First, note that theMC condition is immediately satisfied, because

S and p do not change when interpreting (S, p) as an outcome of

M ′. Thus, we need only show that the approximation holds for the

UM condition:

v ′i (Si ) − P(Si ) ≥vi (Si ) − P(Si ) − ε, ∀i, Si (1)

≥vi (T ) − P(T ) − α − ε, ∀T ⊆ G (2)

≥v ′i (T ) − P(T ) − α − 2ε, ∀T ⊆ G (3)

where (1) and (3) follow because ∥M −M ′∥∞ ≤ ε , and (2) follows

because (S, p) is a α-approximate CE ofM . □

3 LEARNING METHODOLOGY
We now present a formalism in which to model noisy combinato-

rial markets. Intuitively, a noisy market is one in which buyers’

valuations over bundles are not known precisely; rather, only noisy

samples are available.

Definition 3.1 (Conditional Combinatorial Markets). A conditional
combinatorial market MX = (X,G,N , {vi }i ∈N ) consists of a set
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of conditions X, a set of goods G, a set of buyers N , and a set of

conditional valuation functions {vi }i ∈N , where vi : 2
G ×X 7→ R+.

Given a condition x ∈ X, the value vi (S, x) is i’s value for bundle
S ⊆ G.

Definition 3.2 (Expected Combinatorial Market). Let MX = (X,
G,N , {vi }i ∈N ) be a conditional combinatorial market and let D be

a distribution over X. For all i ∈ N , define the expected valuation

function vi : 2
G 7→ R+ by vi (S) = Ex∼D [vi (S, x)], and the corre-

sponding expected combinatorial market asMD = (G,N , {vi }i ∈N ).

The goal of this work is to design algorithms that learn the

approximate CE of expected combinatorial markets. We will learn

their equilibria given access only to their empirical counterparts,

which we define next.

Definition 3.3 (Empirical Combinatorial Market). LetMX = (X,
G,N , {vi }i ∈N ) be a conditional combinatorial market and let D

be a distribution over X. Denote by x = (x1, . . . , xt ) ∼ D a vector

of t samples drawn from X according to distribution D. For all

i ∈ N , we define the empirical valuation function v̂i : 2
G 7→

R+ by v̂i (S) =
1

t
∑t
l=1vi (S, xl ), and the corresponding empirical

combinatorial market as M̂x = (G,N , {v̂i }i ∈N ).

Observation 1 (Learnability). LetMX be a conditional com-
binatorial market and let D be a distribution over X. Let MD and
M̂x be the corresponding expected and empirical combinatorial mar-
kets. If, for some ε, δ > 0, it holds that P

(

MD − M̂x



 ≤ ε
)
≥ 1 − δ ,

then the competitive equilibria ofMD are learnable: i.e, any competi-
tive equilibrium ofMD is a 2ε-competitive equilibrium of M̂x with
probability at least 1 − δ .

Lemma 3.4 (Finite-Sample Bounds for Expected Combina-

torial Markets via Hoeffding’s Ineqality). Let MX be a
conditional combinatorial market, D a distribution over X, and
I ⊆ N × 2G an index set. Suppose that for all x ∈ X and (i, S) ∈ I,
it holds that vi (S, x) ∈ [0, c] where c ∈ R+. Then, with probabil-
ity at least 1 − δ over samples x = (x1, . . . , xt ) ∼ D, it holds that

MD − M̂x




I
≤ c

√
ln(2|I |/δ )/2t .

Hoeffding’s inequality is just one possible choice of concentra-

tion inequality. While it requires bounded noise, boundedness is

not a limitation of our methodology. We could instead assume (un-

bounded) subgaussian or subexponential noise, and substitute the

appropriate Chernoff bounds.

3.1 Baseline Algorithm
EA (Algorithm 1) is a preference elicitation algorithm for combi-

natorial markets. The algorithm places value queries, but is only

assumed to elicit noisy values for bundles. The following guarantee

follows immediately from Lemma 3.4.

Theorem 3.5 (Elicitation Algorithm Guarantees). LetMX
be a conditional market, D be a distribution over X, I an index set,
t ∈ N>0 a number of samples, δ > 0, and c ∈ R+. Suppose that for
all x ∈ X and (i, S) ∈ I, it holds that vi (S, x) ∈ [0, c]. If EA outputs
({v̂i }(i ,S )∈I, ε̂) on input (MX,D,I, t, δ , c), then, with probability at
least 1 − δ , it holds that



MD − M̂x



I
≤ c

√
ln(2|I |/δ )/2t .

Algorithm 1 Elicitation Algorithm (EA)

Input:MX,D,I, t, δ , c
A conditional combinatorial marketMX , a distribution D over X,

an index set I, sample size t , failure probability δ , and valuation

range c .
Output: Valuation estimates v̂i (S), for all (i, S) ∈ I, and an

approximation error ε̂ .

1: (x1, . . . , xt ) ∼ D {Draw t samples from D}

2: for (i, S) ∈ I do
3: v̂i (S) ←

1

t
∑t
l=1vi (S, xl )

4: end for
5: ε̂ ← c

√
ln(2|I |/δ )/2t {Compute error}

6: return ({v̂i }(i ,S )∈I, ε̂)

Algorithm 2 Elicitation Algorithm with Pruning (EAP)

Input:MX,D, t,δ, c, ε
A conditional combinatorial marketMX , a distribution D over X,

a sampling schedule t , a failure probability schedule δ , a valuation
range c , and a target approximation error ε .

Output: Valuation estimates v̂i (S), for all (i, S), approximation

errors ε̂i ,S , failure probability ˆδ , and CE error ε̂ .

1: I ← N × 2G {Initialize index set}

2: (v̂i (S), ε̂i ,S ) ← (0, c/2),∀(i, S) ∈ I {Initialize outputs}

3: for k ∈ 1, . . . , |t | do
4: ({v̂i }(i ,S )∈I, ε̂) ← EA(MX,D,I, tk , δk , c)
5: ε̂i ,S ← ε̂,∀(i, S) ∈ I {Update error rates}

6: if ε̂ ≤ ε or k = |t | or I = ∅ then
7: return ({v̂i }i ∈N , {ε̂i ,S }(i ,S )∈N×2G ,

∑k
l=1 δl , ε̂)

8: end if
9: Let M̂ be the market with valuations {v̂i }(i ,S )∈I
10: Iprune = ∅ {Initialize set of indices to prune}

11: for (i, S) ∈ I do
12: Let M̂−(i ,S ) be the (i, S)-submarket of M̂
13: if v̂i (S) +w∗(M̂−(i ,S )) + 2ε̂n < w∗(M̂) then
14: Iprune ← Iprune ∪ (i, S)
15: end if
16: end for
17: I ← I \ Iprune

18: end for

3.2 Pruning Algorithm
EA elicits buyers’ valuations for all bundles, but in certain situ-

ations, some buyer valuations are not relevant for computing a

CE—although bounds on all of them are necessary to guarantee

strong bounds on the set of CE (Theorem 2.3). For example, in a

first-price auction for one good, it is enough to accurately learn the

highest bid, but is not necessary to accurately learn all other bids,

if it is known that they are lower than the highest. Since our goal

is to learn CE, we present EAP (Algorithm 2), an algorithm that

does not sample uniformly, but instead adaptively decides which

value queries to prune so that, with provable guarantees, EAP’s

estimated market satisfies the conditions of Theorem 2.3.

EAP takes as input a sampling schedule t , which is a sequence

of strictly increasing integers, and a failure probability schedule
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δ , where δk ∈ (0, 1) and
∑
k δk ∈ (0, 1). The algorithm progres-

sively elicits buyers’ valuations via repeated calls to EA. However,

between calls to EA, EAP looks for value queries that are provably

not part of a CE. All such queries (i.e., buyer–bundle pairs) then

cease to be part of the index set with which EA is called in future

iterations.

In what follows, we prove several intermediate results, which en-

able us to prove the main result of this section, Theorem 3.10, which

establishes EAP’s correctness. Specifically, the market learned by

EAP—with potentially different numbers of samples for different

(i, S) pairs—is enough to provably recover any CE of the underlying

market.

Lemma 3.6 (Optimal Welfare Approximations). Let M and
M ′ be compatible markets such that they ε-approximate one another.
Then |w∗(M) −w∗(M ′)| ≤ εn.

Proof. Let S∗ be a welfare-maximizing allocation for M and

U∗ be a welfare-maximizing allocation for M ′. Let w∗(M) be the
maximum achievable welfare in marketM . Then,

w∗(M) =
∑
i ∈N

vi (S
∗
i ) ≥

∑
i ∈N

vi (U
∗
i ) ≥

∑
i ∈N

v ′i (U
∗
i ) − εn

= w∗(M ′) − εn

The first inequality follows from the optimality of S∗ inM , and the

second from the ε-approximation assumption. Likewise,w∗(M ′) ≥
w∗(M) − εn, so the result holds. □

The key to this work was the discovery of a pruning criterion

that removes (i, S) pairs from consideration if they are provably not

part of any CE. Our check relies on computing the welfare of the

market without the pair: i.e., in submarkets.

Definition 3.7. Given a market M and buyer–bundle pair (i, S),
the (i, S)-submarket of M , denoted by M−(i ,S ), is the market ob-

tained by removing all goods in S and buyer i from marketM . That

is,M−(i ,S ) = (G \ S,N \ {i}, {vk }k ∈N \{i }).

Lemma 3.8 (Pruning Criteria). Let M and M ′ be compatible
markets such that ∥M −M ′∥∞ ≤ ε , (i, S) an arbitrary buyer, bundle
pair, andM ′

−(i ,S ) the (i, S)-submarket ofM ′. If the following pruning
criterion holds, then S is not allocated to i in any welfare-maximizing
allocation ofM :

v ′i (S) +w
∗(M ′
−(i ,S )) + 2εn < w∗(M ′) . (4)

Proof. Let S∗,U∗, andU∗
−(i ,S ) be welfare-maximizing alloca-

tions of marketsM,M ′, andM ′
−(i ,S ), respectively. Then,

w∗(M) ≥ w∗(M ′) − εn (5)

> v ′i (S) +w
∗(M ′
−(i ,S )) + εn (6)

≥ vi (S) − ε +w
∗(M−(i ,S )) − ε(n − 1) + εn (7)

= vi (S) +w
∗(M−(i ,S )) (8)

The first inequality follows from Lemma 3.6. The second follows

fromEquation (4). The third follows the assumption that ∥M −M ′∥∞ ≤
ε , and by Lemma 3.6 applied to submarketM−(i ,S ). Therefore, the
allocation in which S is allocated to i cannot be welfare-maximizing

in marketM . □

To establish the correctness of EAP, we rely on the following

generalization of the first welfare theorem of economics, which

handles additive errors.

Theorem 3.9 (First Welfare Theorem [16]). For ε > 0, let
(S, p) be an ε-competitive equilibrium of M . Then, S is a welfare-
maximizing allocation ofM , up to additive error εn.

Theorem 3.10 (Elicitation Algorithm with Pruning Guar-

antees). Let MX be a conditional market, let D be a distribution
over X, and let c ∈ R+. Suppose that for all x ∈ X and (i, S) ∈ I, it
holds thatvi (S, x) ∈ [0, c], where c ∈ R. Let t be a sequence of strictly
increasing integers, and δ a sequence of the same length as t such
that δk ∈ (0, 1) and

∑
k δk ∈ (0, 1). If EAP outputs

({v̂i }i ∈N , {ε̂i ,S }(i ,S )∈N×2G , 1 −
∑
k δk , ε̂) on input (MX,D, t,δ, c, ε),

then the following holds with probability at least 1 −
∑
k δk :

(1)



MD − M̂


I
≤ ε̂i ,S

(2) CE(MD ) ⊆ CE2ε̂ (M̂) ⊆ CE4ε̂ (MD )

Here M̂ is the empirical market obtained via EAP, i.e., the market
with valuation functions given by {v̂i }i ∈N .

Proof. To show part 1, note that at each iteration k of EAP,

Line 5 updates the error estimates for each (i, S) after a call to EA

(Line 4 of EAP) with input failure probability δk . Theorem 3.5 im-

plies that each call to EA returns estimated values that are within ε̂
of their expected value with probability at least 1 − δk . By union

bounding all calls to EA within EAP, part 1 then holds with proba-

bility at least 1 −
∑
k δk .

To show part 2, note that only pairs (i, S) for which Equation (4)

holds are removed from index set I (Line 12 of EAP). By Lemma 3.8,

no such pair can be part of any approximate welfare-maximizing

allocation of the expected market,MD . By Theorem 3.9, no such

pair can be a part of any CE. Consequently, M̂ contains accurate

enough estimates (up to ε) of all (i, S) pairs that may participate in

any CE. Part 2 then follows from Theorem 2.3. □

4 EXPERIMENTS
In this section, we evaluate the empirical performance of our learn-

ing algorithms. To our knowledge, there have been no analogous

attempts to learning CE; hence, we do not include any baseline algo-

rithms from the literature in our experiments. Rather, we compare

the performance of EAP, our pruning algorithm, to EA, investigat-

ing the quality of the CE learned by both, as well as their sample

efficiencies.

We let U [a,b] denote the continuous uniform over the continu-

ous range [a,b], andU {k, l}, the discrete uniform distribution over

the set {k,k + 1, . . . , l}, for k ≤ l ∈ N.

4.1 Experimental Setup
Since one of the main goals of these experiments is to study the

quality of learned CE, we focus on GS valuations. In particular, we

choose unit-demand valuations. A buyer i is endowed with unit-

demand valuations if, for all S ⊆ G, vi (S) = maxj ∈S vi ({j}). In a

unit-demand market, all buyers have unit-demand valuations. A

unit-demand market can be compactly represented by matrix V,
where entry vi j ∈ R+ is i’s value for j, i.e., vi j = vi ({j}). In what



Learning Competitive Equilibria in Noisy Combinatorial Markets AAMAS’20, May 2020, Auckland, New Zealand

ε = 0.05 ε = 0.2

Distribution p̂min p̂max p̂min p̂max

Uniform 0.0018 0.0020 0.0074 0.0082

Preferred-Good 0.0019 0.0023 0.0080 0.0094

Preferred-Good-Distinct 0.0000 0.0020 0.0000 0.0086

Preferred-Subset 0.0019 0.0022 0.0076 0.0090

Table 1: Average UM-Loss for ε ∈ {0.05, 0.2}.

follows, we denote by V a random variable over a unit-demand

valuations, represented by a matrix V.
Our goal is to robustly evaluate our algorithms, so we exper-

iment with a variety of qualitatively different inputs. In partic-

ular, we construct four different distributions over unit-demand

markets: Uniform, Preferred-Good, Preferred-Good-Distinct,

and Preferred-Subset. All distributions are parameterized by

n and m, the number of buyers and goods, respectively. A uni-

form unit-demand market V ∼ Uniform is such that for all i, j,
vi j ∼ U [0, 10]. In a preferred-good unit-demand market, where

V ∼ Preferred-Good, each buyer i has a preferred good ji ,
with ji ∼ U {1, . . . ,m} and vi ji ∼ U [0, 10]. Conditioned on vi ji ,
i’s value for good k , ji is given by vik = vi ji/2k . Distribu-

tion Preferred-Good-Distinct is similar to Preferred-Good,

except that no two buyers have the same preferred good. Note that

the Preferred-Good-Distinct distribution is only well defined if

n ≤ m. Finally, in a preferred-subset unit-demand market, where

V ∼ Preferred-Subset, each buyer i is interested in a subset of

goods iG ⊆ G , where iG is drawn uniformly at random from the set

of all bundles. Then, the value i has for j is given by vi j ∼ U [0, 10],
if j ∈ iG ; and 0, otherwise.

4.2 Simulation of Noisy Valuation Elicitation
In what follows, we fix a realization of a unit-demand market V,
drawn from one of the aforementioned unit-demand distributions.

We also fix a condition set X = [a,b], where a < b. We then

define the conditional unit-demand marketMX , where vi (S, xi j ) =
maxj ∈S {vi j } + xi j , for xi j ∈ X. Conditional market MX together

with distribution D on X is the model from which our algorithms

elicit noisy valuations from buyers. For these experiments, all noise

is drawn i.i.d.

We experiment with three noise models, low, medium, and high,

by adding noise drawn fromU [−.5, .5],U [−1, 1], andU [−2, 2], re-
spectively. We choose n,m ∈ {5, 10, 15, 20}2, and we fix the failure

probability at δ = 0.1.

4.3 Empirical UM Loss of EA
In our first set of experiments, we investigate the empirical quality

of the CE in the markets learned by EA. To measure the quality of

a CE ( ˆS, p̂) computed for a market M̂ in another marketM , we first

define the metric

UM-LossM ,i ( ˆS, p̂) = max

S ⊆G
(vi (S) − P̂(S)) − (vi (Ŝi ) − P̂(Ŝi )),

i.e., the difference between the maximum utility i could have at-

tained at prices p̂ and the utility i attains at the outcome ( ˆS, p̂). Our

metric of interest is then

UM-LossM ( ˆS, p̂) = max

i ∈N
UM-LossM ,i ( ˆS, p̂),

which is a worst-case measure of utility loss over all buyers in the

market. Note that it is not useful to incorporate the MC condition

into a loss metric, because it is always satisfied.

In our experiments, given an empirical estimate M̂x ofM , and

a CE ( ˆS, p̂) in M̂x , we measure UM-LossM ( ˆS, p̂), i.e., the loss in

M at prices p̂ of CE ( ˆS, p̂). Theorem 2.3 implies that if M̂x is an

ε-approximation ofM , then UM-LossM ( ˆS, p̂) ≤ 2ε . Moreover, The-

orem 3.5 yields the same guarantees, but with probability at least

1 − δ , provided the ε-approximation holds with probability at least

1 − δ .
As a learned CE is a CE of a learnedmarket, we require ameans of

computing the CE of a market—specifically a unit-demand market

V. To do so, we first solve for the1 welfare-maximizing allocationS∗V
of V, by solving for the maximum weight matching in the bipartite

graph whose weight matrix is given by V. Fixing S∗V, we then solve

for prices via linear programming. In general, there might be many

prices that couple with S∗V to form a CE of V. For simplicity, we

solve for two pricings given S∗V, the revenue-maximizing pmax and

revenue-minimizing pmin, where revenue is defined as the sum of

the prices.

For each distribution, we draw 50 markets, and for each such

market V, we run EA four times, each time to achieve guarantee

ε̂ ∈ {0.05, 0.1, 0.15, 0.2}. EA then outputs empirical estimate V̂ for

each V. We compute outcomes (S∗
V̂
, p̂max) and (S∗V̂, p̂min), and mea-

sure UM-LossV(S∗V̂, p̂max) and UM-LossV(S∗V̂, p̂min), for all possible
combinations of the experimental parameters. We then average

across all market draws, for both the minimum and the maximum

pricings, for each possible configuration of the experimental pa-

rameters.

Table 1 summarizes a subset of these results. The error guar-

antees are consistently met across the board, indeed by one or

two orders of magnitude, and they degrade as expected: i.e., with

higher values of ε . We note that the quality of the learned CE is

roughly the same for all distributions, except in the case of p̂min and

Preferred-Good-Distinct, where learning is more accurate. For

this distribution, it is enough to learn the preferred good of each

buyer. Then, one possible CE is to allocate each buyer its preferred

good and price all goods at zero which yields near no UM-Loss.
Note that, in general, pricing all goods at zero is not a CE unless

the market has some special structure, like that of markets drawn

from Preferred-Good-Distinct.

4.4 Sample Efficiency of EAP
In these experiments, we evaluate the sample efficiency of EAP. We

say that algorithm A has better sample efficiency than algorithm B
if A requires fewer samples than B to achieve a desired accuracy ε .

Our experimental design is as follows. Fixing a unit-demand

market, and the following values of ε ∈ {0.05, 0.1, 0.15, 0.2}, we
compute the number of samples t(ε) that would be required for EA

to achieve accuracy ε . We then use the following doubling strategy

1
Since values vi j are drawn from continuous distributions, we assume that the set of

markets for which there are multiple welfare-maximizing allocations is of negligible

size.
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Figure 1: Average EAP sample efficiency relative to EA for ε̂ = 0.05. Each (i, j) entry is annotated with the corresponding %
saving.

as a sampling schedule for EAP, t(t(ε)) = [t (ε )/4, t (ε )/2, t(ε), 2t(ε)],
rounding to the nearest integer as necessary, and the following

failure probability schedule δ = [0.0125, 0.0125, 0.0125, 0.0125] so
that the total failure probabilities sum to 0.1. Using these schedules,

we run EAP with a desired accuracy of zero. We denote by εEAP(ε)
the approximation guarantee achieved by EAP upon termination.

For each distribution, we compute the average of the number of

samples used by EAP across 50 independent market draws. We re-

port samples used by EAP as a percentage of the number of samples

used by EA to achieve the same guarantee, namely, εEAP(ε), for each
initial value of ε . Figure 1 depicts heat maps for all distributions, for

ε = 0.05, where darker colors indicate more savings, and thus better

EAP sample efficiency. A few trends arise, which we note are simi-

lar for other values of ε . For fixed number of buyers, EAP has better

sample efficiency as the number of goods increases, because fewer

goods can be allocated, which means that there are more candidate

values to prune, resulting in more savings. The sample efficiency

usually decreases as the number of buyers increases, which is to

be expected, as the pruning criterion degrades with the number of

buyers (Lemma 3.8). While savings exceed 30% across the board, we

note that Uniform experiences the least savings—it has the least

structure—and Preferred-Subset, the most. This shows that EAP

is capable of exploiting the structure present in these distributions,

despite not knowing anything about them a priori.
Finally, we note that sample efficiency quickly degrades for

higher values of ε . In fact, for high enough values of ε (in our

experiments, ε = 0.2), EAP might, on average, require more sam-

ples than EA to produce the same guarantee. Most of the savings are

the result of pruning enough (i, j) pairs early enough: i.e., during

the first few iterations of EAP. Four our experimental setup, when

ε is large (ε = 0.2), then our sampling schedule does not allocate

enough samples early on. While we report results for our particu-

lar choices of parameters, it is worth noting that when designing

sampling schedules for EAP, one must allocate enough (but not too

many) samples at the beginning of the schedule. Precisely how to

determine this schedule is an empirical question, largely dependent

on the particular application at hand.

5 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we define noisy combinatorial markets as a model

of combinatorial markets in which buyers cannot feasibly express

their valuations with complete certainty, but can instead provide

only noisy samples of them by, for example, using approximate

methods, heuristics, or truncating the run-time of a complete algo-

rithm. For this model, we tackle the problem of learning competitive

equilibria solely from samples of buyers’ valuations for bundles

of goods. We first show tight lower- and upper-bounds on the set

of CE, given a uniform approximation of one market by another.

We then develop learning algorithms that, with high probability,

learn said uniform approximations using only finitely many sam-

ples. Leveraging the first welfare theorem of economics, we define

a pruning criterion under which an algorithm can provably stop

learning about buyers’ valuations for bundles, without affecting

the quality of the set of learned competitive equilibria. We embed

these conditions in an algorithm that we show experimentally is

capable of learning equilibria with substantially fewer samples than

the baseline, provided the underlying market has some exploitable

structure. Crucially, the algorithm need not know anything about

this structure a priori. Our algorithm is general enough to work

in any combinatorial market. An interesting future direction is to

speed up learning by developing alternative pruning criteria that

exploit the structure of special classes of valuations.
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