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ABSTRACT
Condorcet extensions have long held a prominent place in social

choice theory. A Condorcet extension will return the Condorcet

winner as the unique winner whenever such an alternative exists.

However, the definition of a Condorcet extension does not take

into account possible manipulation by the voters. A profile where

all agents vote truthfully may have a Condorcet winner, but this

alternative may not end up in the set of winners if agents are act-

ing strategically. Focusing on the class of tournament solutions,

we show that many natural social choice functions in this class,

such as the well-known Copeland and Slater rules, cannot guar-

antee the preservation of Condorcet winners when agents behave

strategically. Our main result in this respect is an impossibility

theorem that establishes that no tournament solution satisfying a

very weak decisiveness requirement can provide such a guarantee.

On the bright side, we identify several indecisive but otherwise

attractive tournament solutions that do guarantee the preservation

of Condorcet winners under strategic manipulation.
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1 INTRODUCTION
By a seminal result in social choice theory, we know that every non-

trivial resolute social choice function—or voting rule—is susceptible

to strategic manipulation by voters [21, 33].

While there are instances of manipulation that arguably are not

a cause for great concern—voting for your second choice rather

than your top choice to avoid wasting your vote, for example—there

are other instances that may seriously undermine the confidence

we have in the end result of a vote. Our proposal in this paper is to

define a more fine-grained strategyproofness axiom that dictates

a specific kind of “undesirable” manipulation should not occur.

We do not examine whether strategyproofness can be satisfied

alongside a set of other desirable axioms, but whether the fact

that strategyproofness fails can affect the “strength” of the other

axiom(s). Our focus is on Condorcet extensions, and how failure of

strategyproofness affects Condorcet consistency.

Suppose for a set of agents, that the preference profile resulting

from everyone submitting their true preferences has a Condorcet

winner, and suppose further that we use a Condorcet-consistent

voting rule to aggregate their preferences. If everyone reports their

true preferences, any Condorcet extension will return the Con-

dorcet winner as the sole winner. However, not all such functions

are strategyproof, and it may happen that the agents’ truthful prefer-

ences differ from their reported preferences. If an agent manipulates

under such a rule—meaning she submits a preference other than

her true one—it is possible that this will result in a reported pro-

file without a Condorcet winner, despite the fact that the truthful

profile has one. In other words, some Condorcet extensions may

fail to return the Condorcet winner of the truthful profile as the

outcome. We examine exactly when the lack of strategyproofness

affects whether we can trust that a Condorcet extension will give

us all “true” Condorcet winners, even under the assumption that

agents will vote strategically.

Related work. There are various methods found in the literature

for circumventing the impossibility result due to Gibbard [21] and

Satterthwaite [33]. One strategy is to consider a restricted domain

for the social choice function, where strategyproofness is guar-

anteed. Among these domain restrictions, the best-known is the

single-peaked domain of Black [6].
1
A more recent approach is to

argue that the computational hardness of computing a successful

manipulation strategy may be a barrier to manipulation [5, 14]. Sim-

ilar results have been obtained by considering voters’ ignorance of

others’ preference as an informational barrier [15, 28, 30].

Finally, while the Gibbard-Satterthwaite Theorem deals a blow

to resolute social choice functions, irresolute functions come away

relatively unscathed. While there are similar impossibility results

for irresolute rules [3, 17, 20, 23, 31], these results differ in how they

define manipulability as they by necessity must make assumptions

about agents’ preferences over sets of alternatives. Duggan and

Schwartz [17], for example, work with optimistic and pessimistic

agents, while Gärdenfors [20] defines manipulability relative to his

eponymous preference extension.

Although impossibilities abound, shifting focus away from reso-

luteness has also led to positive results regarding the strategyproof-

ness of social choice functions. Gärdenfors [20] identifies two such

strategyproof functions for the Gärdenfors extension—the one that

returns all alternatives ranked first by at least one agent, and the

one returning the Condorcet winner when one exists and the whole

set of alternatives when one does not. Brandt [8] characterises the

pairwise social choice functions that are strategyproof under the

Kelly preference extension, among them the bipartisan set and

the minimal covering set. Brandt and Brill [10] build on these re-

sults and find sufficient conditions for strategyproofness under the

stronger Fishburn and Gärdenfors extensions as well, thereby iden-

tifying further social choice functions that are strategyproof for

each of the three extensions.

More fine-grained approaches to strategyproofness have also

been explored in the social choice literature. Sato [32] considers

adjacency-strategyproofness, which requires agents to make large

changes to their reported preference in order to successfully ma-

nipulate. For social welfare functions, Bossert and Sprumont [7]

have obtained positive results for a form of strategyproofness that

considers only manipulations resulting in outcomes located be-
tween an agent’s true preference order and the outcome when no

1
For a more thorough treatment of single-peakedness and many other domain restric-

tions, see Gaertner [19].



manipulation occurs. They find several social welfare functions,

including the Kemeny and the Slater rules, that are strategyproof in

this sense. More recently, Kruger and Terzopoulou [25] have exam-

ined the manipulability of scoring rules for agents with incomplete

preferences. They distinguish between agents adding alternatives

to their (incomplete) ranking, deleting alternatives, or swapping

positions of alternatives in their preference order. They identify

scoring rules that are strategyproof with respect to each of these

forms of manipulation.

Requiring the preservation of Condorcet winners under strate-

gic manipulation can also be seen as a stability axiom that tells us

when—or under what social choice function—profiles with Con-

dorcet winners are stable. Similar notions of stability exist in game

theory, as well as game-theoretic examinations of voting. Trem-

bling hand equilibria [34], for example, are Nash equilibria that

are stable with regard to small “slips of the hand”. Trembling hand

equilibria have also been studied in voting— Obraztsova et al. [27],

for example, study trembling hand equilibria of Plurality voting—

where such an equilibrium corresponds to a profile where no voter

has an incentive to deviate, even under the assumption that others’

hands may tremble and slip.

Contribution. To distinguish between social choice functions that

do not incentivise manipulation in profiles with a Condorcet winner

and those that do, we introduce the notion of a robust Condorcet
extension. We then show that no irresolute tournament solution

that is weakly resolute—in the sense of returning a single winning

alternative in at least one profile that does not have a Condorcet

winner—can possibly be such a robust Condorcet extension. This

class of weakly resolute rules includes the well-known Copeland

[16] and Slater [35] social choice functions. Finally, we identify

several attractive social choice functions that are robust Condorcet

extensions (and thus fail weak resoluteness). This includes, in par-

ticular, the minimal extending set [9] and all of its coarsenings.

Paper outline. The remainder of the paper is organised as follows.

We introduce the framework and relevant literature in Section 2.

In Section 3 we present an impossibility result for weakly resolute

rules. In Section 4 we we present a number of sufficient conditions

for a Condorcet extension to be robust. We conclude in Section 5.

2 THE MODEL
In this section we introduce the framework and notation we will be

using throughout the paper. Much of the material up to Section 2.6

is familiar from social choice theory [1, 12]. In Section 2.6, we

introduce the novel notion of a robust Condorcet extension, the

central concept of this paper.

2.1 Preference Profiles
Let A be a finite set of alternatives, and N = {1, . . . ,n} a finite set
of agents. A preference profile P = (≻P

1
, . . . ,≻P

n ) is a vector of strict

linear orders over A, where ≻P
i is the preference relation of agent i

in the profile P . L(A) denotes the set of all linear orders over A,
and L(A)n denotes the set of all profiles for n agents.

For a profile P , ⪰P
(with asymmetric part ≻P

) is the major-
ity relation for P and is defined such that a ⪰P a′ if and only if

|{i ∈ N | a ≻P
i a′}| ≥ |{i ∈ N | a′ ≻P

i a}|, for all a,a′ ∈ A.

An alternative a ∈ A is a Condorcet winner in profile P if it defeats

every other alternative in a pairwise majority contest, meaning

a ≻P a′ for all a′ ∈ A \ {a}. We define DCondorcet as the set of

profiles with a Condorcet winner.

For two profiles P and P ′
, and agent i ∈ N , we write P =−i P ′

,

and say they are i-variants, if ≻P
j = ≻P ′

j for all j ∈ N \ {i}.

We say a relation ⪰ over A is complete if for all a,b ∈ A it is the

case that a ⪰ b or b ⪰ a. A relation ≻ is connex if a ≻ b or b ≻ a for

all distinct a,b ∈ A. Note that the majority relation of any profile is

complete, and any individual preference relation is connex.

2.2 Tournaments
A tournament T is a pair (S,≻T ), where S is a set of nodes and ≻T

is an asymmetric and connex relation over S , which we call the

dominance relation of the tournament. For a set S , we denote by
T(S) all tournaments on S .

For a tournament T = (S,≻T ), we say an alternative a ∈ S

dominates a′ ∈ S in the tournament T if a ≻T a′. The dominion
of a in T is defined as DT (a) = {a′ ∈ S | a ≻T a′}, the set of

alternatives it dominates. The dominators of a in T is defined as

DT (a) = {a′ ∈ S | a′ ≻T a}, the set of alternatives that dominate

it. For S ′ ⊆ S , we define the restriction ≻TS ′= {(a,a′) ∈ S ′ × S ′ |

a ≻T a′}, which is ≻T restricted to the set S ′. A subtournament
of T = (S,≻T ) is a tournament (S ′,≻TS ′) where S

′ ⊆ S . Thus, a
subtournament of T is a subset of the nodes in T , and the edges

between those nodes.

We say π : S → S ′ is an isomorphism between two tournaments

T = (S,≻T ) and T ′ = (S ′,≻T ′
) if π is a bijection, and a ≻T a′ ⇔

π (a) ≻T
′
π (a′) for all (a,a′) ∈ S × S .

We say a profile P ∈ L(A)n induces tournament T = (A,≻T )

if ≻P = ≻T . So a profile induces a tournament if they range over

the same alternatives, and the strict part of the majority relation is

exactly the dominance relation of the tournament. Note that if a

profile induces a tournament, the strict component of the majority

relation of that profilemust be connex. As tournaments do not speak

about agents, we cannot directly talk about two tournaments being

i-variants for some agent i ∈ N . Instead, we say two tournaments

T = (A,≻T ) andT ′ = (A,≻T
′
) are single-agent variants, and write

T =−1 T ′
, if there exist a set of agents N and profiles P ,P ′ ∈ L(A)n

such that P =−i P ′
for some agent i ∈ N , and the profiles P and P ′

induce the tournamentsT andT ′
, respectively.

We say an element a ∈ S is the Condorcet winner of the tourna-
mentT = (S,≻T ) if DT (a) = ∅. This corresponds to the notion of

a Condorcet winner of a profile; if a tournament has a Condorcet

winner, that alternative will be the Condorcet winner in any profile

that induces this tournament. We write TCondorcet to mean the set

of profiles that have a Condorcet winner.

2.3 Social Choice Functions
An irresolute social choice function (SCF) is a mapping from profiles

to nonempty subsets of alternatives:

f : L(A)n → 2
A \ {∅}

To avoid having to break majority ties, we define social choice

functions for odd n. Note, however, that while our functions are
only defined for odd n, we do not require that the number of agents



is odd in all profiles. A SCF f is aCondorcet extension, or isCondorcet-
consistent, if it returns (only) the Condorcet winner whenever one
exists.

For irresolute social choice functions, the size of the set of win-

ning alternatives is an important consideration. All things being

equal, it is preferable that the SCF does not outsource the decision-

making to a tie-breaking mechanism, but rather does most of the

work of selecting a winner itself. More simply put, we would rather

a SCF return small sets than large ones. As an example of a rule that

returns quite large sets, take the rule that returns the Condorcet

winner if one exists, and returns the whole set of alternatives oth-

erwise. While this is clearly a Condorcet extension, it is a very

indecisive rule, as it often results in many ties in the outcome.

A SCF is resolute if it always returns a singleton. In order to

quantify how decisive an irresolute rule is, we define a weaker

notion of resoluteness. We say f is weakly resolute if there exists
a profile P ∈ L(A)n \ DCondorcet for which | f (P)| = 1. So, a rule

is weakly resolute if it sometimes returns a singleton for a profile

without a Condorcet winner.

For many social choice functions, we can directly compare how

decisive they are relative to each other. A SCF f is a refinement
of f ′ if for all profiles P ∈ L(A)n it is the case that f (P) ⊆ f ′(P),
meaning f always returns a subset of f ′. If f is a refinement of f ′,
we say f ′ is a coarsening of f . If a rule is a refinement of another,

it is clearly the more decisive of the two.

2.4 Tournament Solutions
A tournament solution is a mapping from tournaments to sets of

alternatives, that does not distinguish between isomorphic tourna-

ments:

F : T(S) → 2
S \ {∅}

So F (T ′) = {π (a) | a ∈ F (T )} if π is an isomorphism betweenT and

T ′
. For ease of reading, we will sometimes write F (≻T ) to mean

F (S,≻T ) when S is clear from context.

A social choice function f is equivalent to a tournament solution

F if f (P) = F (A,≻P ) for all P ∈ L(A)n . Note that the majority

relation of this profile P must be a strict order, as the SCF f is

defined for odd n only. In a slight muddling of terminology, we will

refer to social choice functions that are equivalent to tournament

solutions as tournament-solution SCFs.
Tournament solutions roughly correspond to Fishburn’s C1 func-

tions [18], which require only the information in the majority graph

to determine the winners. More precisely, tournament-solution

SCFs correspond to neutral C1 functions,2 as tournament solutions

do not distinguish between isomorphic tournaments, and therefore

do not favour any alternatives over others.

2.5 Extending Preferences
Because the rules we examine are irresolute—meaning they do

not always return a single winner—we need to specify how agent

preferences over alternatives are extended to preferences over sets
of alternatives.

2
A social choice function satisfies Neutrality if for any profile P and any permutation

π : A → A: it is the case that f (π (P )) = π (f (P )).

A preference extension e maps any given preference relation ≻

over alternatives in A, to a relation ⪰e (with strict part ≻e ) over

sets of alternatives. We define two requirements for any preference

extension e:

• x ≻ y implies {x} ≻e {y}
• X ≻e Y implies that there exist some x ∈ X and y ∈ Y such

that x ≻ y and {x ,y} ⊈ X ∩ Y

The first requirement simply dictates that e stays faithful to the

agent’s preferences when comparing singleton sets. The second

requires that e does not extend the preferences in a way that com-

pletely disagrees with an agent’s preferences over alternatives. Our

first requirement corresponds to the Extension Rule of Barberà et al.

[4], and them-extension of Kruger and Terzopoulou [25], while our

second requirement corresponds to their l-extension.

For an agent i with preference relation ≻P
i in profile P , we write

⪰
P ,e
i to denote her preferences over sets of alternatives, extended

according to e . We say an agent has e-preferences, if ⪰P ,e
i is her

preference relation over sets of alternatives.

We will focus in particular on the Gärdenfors preference exten-
sion3 [20], which we refer to as д. For any two sets X and Y in

2
A \ {∅}, we have X ≻д Y if and only if one of the following three

conditions is satisfied:

(i) X ⊂ Y and for all x ∈ X and y ∈ Y \ X , we have x ≻ y
(ii) Y ⊂ X and for all x ∈ X \ Y and y ∈ Y , we have x ≻ y
(iii) NeitherX ⊂ Y norY ⊂ X , and for all x ∈ X \Y andy ∈ Y \X ,

we have x ≻ y

The Gärdenfors extension dictates that if one set is to be preferred

over another, then any alternative added to the first set to reach

the second should be preferred to the alternatives in the initial

set. Similarly, those alternatives removed from the initial set to

reach the new (and preferred) set, should be less preferred. The

alternatives the two sets have in common are therefore not relevant,

as the Gärdenfors extension only looks at how the two sets differ.

We say an agent has Gärdenfors-preferences if her preferences

are extended to sets of alternatives according to the Gärdenfors

extension.

2.6 Robust Condorcet Extensions
We say an irresolute social choice function f is Condorcet-
manipulable by agent i in profile P , under preference extension e , if

there exists another profile P ′ =−i P such that f (P ′) ≻P ,e
i f (P) and

P ∈ DCondorcet. We are now ready to present our central definition.

Definition 1. A SCF f is a robust Condorcet extension under a
preference extension e if f is Condorcet-consistent, and not Condorcet-
manipulable in any profile P ∈ DCondorcet, by any i ∈ N with
e-preferences.

So a SCF is robust under a certain preference extension, if it is

not Condorcet manipulable by any agent whose preferences over

alternatives have been extended to sets of alternatives according to

that extension.

While robustness is a weak strategyproofness requirement, it

also speaks about how well a rule can preserve Condorcet winners.

3
For a more thorough treatment of the Gärdenfors extension, as well as how it relates

to other preference extensions in the literature, we refer to Brandt and Brill [10].



A robust Condorcet extension ensures that, if the truthful profile

has a Condorcet winner, then it is a weakly dominant strategy

for all agents to report their true preferences, thus ensuring that

no Condorcet winner loses that designation because of strategic

manipulation. A robust Condorcet extension therefore ensures that

profiles with Condorcet winners are, in a sense, stable. We give

an example of a Condorcet manipulation of the Copeland SCF,
4
to

demonstrate what failure of robustness looks like.

Example 2.1. Suppose the profile below, along with the corre-

sponding majority graph is the “truthful” profile, meaning all three

agents have reported their true preferences. As alternative a is the

Condorcet winner, Copeland will return a as the sole winner if all

agents vote truthfully. Note however, that agent 1 has the ability to

reverse the dashed edges (a,b) and (a,d) in the majority graph, by

moving b and d above a in her own preference order, while keeping

their relative ranking as it is. Agent 1 also has an incentive to do so,

as this would result in a majority graph where c—her top choice—is

the only alternative with a single incoming edge.

agent 1 agent 2 agent 3

c a e
a c d
b e b
d d a
e b c

a b

e c

d
As the Copeland winner is the alternative with the smallest num-

ber of incoming edges in the majority graph, c would be the lone

Copeland winner if agent 1 misreports her preferences, meaning,

Copeland incentivises a Condorcet-manipulation in this profile. △

While the profile in Example 2.1 has a Condorcet winner, Copeland

is not guaranteed to return this alternative as the winner (or even

among them) unless we assume all agents vote truthfully. In the

same profile, a robust Condorcet-extension would ensure no agent

would have an incentive to misreport her preferences.

3 IMPOSSIBILITES
We present a first impossibility result, showing there is no perfect

function that is robust under all preference extensions.

Proposition 3.1. No tournament-solution SCF is robust under all
preference extensions.

Proof. LetA = {a,b, c}, N = {1, 2, 3}, and let f be a Condorcet-

consistent SCF equivalent to the tournament solution F . Suppose

agent 1’s preferences over sets of alternatives ⪰
P ,e
1

are such that

X ≻
P ,e
1

Y if and only if one of the following holds:

• X = {a,b, c} and Y = {a}, or
• X = {x} and Y = {y} for some x ,y ∈ A such that x ≻ y.

These preferences satisfy both our requirements for preference

extensions, and are therefore a valid extension of ≻P
1
.

4
The Copeland score of an alternative in a profile (for odd n) is the number of other

alternatives it beats in a pairwise majority contest. The Copeland rule selects those

alternatives with the highest Copeland scores [16].

Let P be the profile shown below, with the induced tournament

T on the right. As f is a Condorcet extension, f (P) = {a}. Let

P ′ =−1 P , where b ≻P ′
1

c ≻P ′
1

a, meaning agent 1 reverses the edge

(a, c) in the induced tournament by reversing the order of these

alternatives in her ranking. The tournament T ′
, induced by P ′

,

consists of a 3-cycle.

agent 1 agent 2 agent 3

b a c
a b a
c c b

a b

c

As tournament solutions do not distinguish between isomorphic

tournaments, f (P ′) = F (T ′) = {a,b, c}. As {a,b, c} ≻P ,e
1

{a}, this
would constitute a successful manipulation for agent 1, meaning f
cannot be robust. □

As there are no social choice functions that are robust for all prefer-
ence extensions, we redirect our search to those that may be robust

for some preference extension. We first recall a result by McGarvey

[26], which we will use to prove the main result of this section. We

include the proof for the sake of completeness.

Theorem 3.2 (McGarvey, 1953). LetA be a set of alternatives, and
let ≥ be a complete relation over A. Then there is a profile P ∈ L(A)n

for some even n such that ⪰P = ≥, and if a > b, there are n
2
+ 2

agents ranking a over b in P .

Proof. For a set of alternatives A and a relation ≥ (with strict

component >) over A, the profile P is constructed for an even

number of agents N = {iab , jab | (a,b) ∈ >} as follows. For every

pair of alternatives such that a > b, there are two voters iab and

jab , with the following preferences:

a ≻P
iab b ≻P

iab x1 ≻P
iab · · · ≻P

iab x |A |−2 and

x |A |−2 ≻P
jab · · · ≻P

jab x1 ≻P
jab a ≻P

jab b,

Here {x1, . . . x |A |−2} = A \ {a,b}. For each agent in N \ {iab , jab }
who prefers a over b, there will be exactly one corresponding agent
who prefers b over a, meaning in the profile P exactly

n
2
+ 2 agents

prefer a to b. As this holds for any pair of alternatives, it is clear

that ⪰P = ≥. □

Note that while our statement of McGarvey’s Theorem is slightly

stronger than in the original paper, the proof and the profile con-

structed in the proof remain the same.

We now show that weakly resolute rules fail robustness for all

preference extensions, and further, that they are the only rules that

do so.

Theorem 3.3. A tournament-solution SCF is weakly resolute if
and only if it fails robustness under all preference extensions.

Proof. For the right-to-left direction we prove the contrapos-

itive. That is, we suppose f is a tournament-solution SCF that

fails weak resoluteness and show it must be robust under some

preference extension. To see that this must be the case, note that



T ′

xyz

· . . . ·

. . .

S

T

xyz

· . . . ·

. . .

S

⪰M

xyz

· . . . ·

. . .

S

flip S

≻P
i to ≻P ′

i

+i

Figure 1: Tournaments T and T ′—with winners marked in
bold—and relation ⪰M involved in proof of Theorem 3.3.
Ties are represented by bidirectional arrows.

any rule failing weak resoluteness never returns singletons outside

DCondorcet. This means the preference extension ranging only over

singletons would never (strictly) favour a larger set over the single-

ton set with the Condorcet winner. As f will always return a set

larger than a singleton outside the Condorcet domain, Condorcet-

manipulationwith these preferences is not possible, therebymaking

f robust under this preference extension.

For the left-to-right direction, let A be our set of alternatives.

Suppose f is a weakly resolute tournament-solution SCF, equivalent

to a tournament solution F . We show it is possible for an agent

to manipulate f from a profile with a Condorcet winner under an

arbitrary preference extension e , meaning f cannot be robust under

any preference extension.

We first define two tournamentsT andT ′
, which we will show

are single-agent variants. As F is equivalent to a weakly resolute

SCF, there is some tournament T ′ = (A,≻T
′
) ∈ T (A) \ TCondorcet

such that F (T ′) = {x} for an alternative x ∈ A. As x is not a

Condorcet winner in T ′
, there must be some y ∈ A such that

y ≻T
′
x , and by the same reasoning, there must be at least one

alternative z ∈ A such that z ≻T
′
y. We conclude that the nodes

{x ,y, z} and the edges (y,x), (z,y) must be present in T ′
. For a

visual representation, see Figure 1.

Let S = DT ′(y) be the dominators of y inT ′
. We define a second

tournament T = (A,≻T ), where y ≻T a for all a ∈ S , and ≻T

agrees with ≻T
′
on all other pairs of alternatives. In other words,

we simply reverse all incoming edges of y inT ′
to obtainT . Note

that this makes y a Condorcet winner inT , meaning F (T ) = {y}.
We now show thatT andT ′

are single-agent variants. We start

by constructing a profile P that inducesT . To this end, consider a

complete relation ⪰M (with strict component ≻M , and symmetric

component ∼M ) overA, such that ⪰M = ≻
T ∪ {(a,y) | a ∈ S}. This

means ⪰M and ≻T agree on all pairs of alternatives except those

for which T and T ′
differ. In those cases, ⪰M gives a tie between

the alternatives. By Theorem 3.2, we know there exists a profile

P∗ = (≻P ∗
1
, . . . ,≻P ∗

n ) with majority relation ⪰M . Further, we know

that we can construct P∗ with an even number of agents n, such

that for any a,a′ ∈ A, where a ≻M a′, there are exactly n
2
+2 agents

who prefer a to a′ in P∗. We use P∗ to construct the profile P . Let

P = (≻P ∗
1
, . . . ,≻P ∗

n ,≻
P
i ), where x ≻P

i y ≻P
i a for all a ∈ A \ {x ,y}.

To see that P induces tournament T , note that for any pair of

alternatives (a,a′), either

(i) a ≻M a′—meaning a ≻T a′, and n
2
+ 2 prefer a to a′ in P∗,

or

(ii) a ∼M a′—meaning a′ = y, and a ∈ S (or vice versa).

If (i) is the case, a majority of agents in P will prefer a to a′ regard-
less of agent i’s preferences; n

2
+ 2 agents still form a strict majority

of n + 1 agents. If on the other hand (ii) is the case, we know from

agent i’s preferences that y ≻P
i a. As these alternatives were tied

in P∗, adding agent i to the profile breaks these ties in favour of y,
so a majority of agents in P will now prefer y to a.

This means the only differences between ⪰M and ⪰P
relate to

the same pairs on which ⪰M and ⪰T differ. As the changes agree

with ≻T , this makes ≻T = ≻P
, meaning P inducesT . As F (T ) = {y},

we can conclude that f (P) = {y}.
It now remains to construct a profile P ′

such that P =−i P ′
and

P ′
inducesT ′

. Let P ′ = (≻P
1
, . . . ,≻P

n ,≻
P ′
i ), and x ≻P ′

i a ≻P ′
i y, for

all a ∈ A \ {x ,y}, meaning agent i moves y to the bottom of their

ranking. Clearly, P ′
is an i-variant of P . In the tournament induced

by P ′
, it must be the case that the edges (a,y) for all a ∈ S are

present as the majority on these alternatives is dictated by agent i
(and all other edges remain as they were in T ). As these edges

correspond exactly to those whereT andT ′
differ, P ′

must induce

T ′
, and as F (T ′) = {x} we can conclude f (P ′) = {x}.

Finally, let ⪰
P ,e
i be agent i’s true preferences over sets of alter-

natives, extended according to e . It is immediately clear, as both

outcomes are singletons and x ≻P
i y, that f (P ′) ≻P ,e

i f (P). As P
has a Condorcet winner, this constitutes a Condorcet-manipulation,

meaning f cannot be robust under preference extension e . This
concludes the proof. □

We note that Theorem 3.3 applies to two of the most prominent

Condorcet extensions—Copeland, and Slater.
5

4 ROBUST TOURNAMENT SOLUTIONS
In this section, we present our robustness results for several

tournament-solution SCF, and their coarsenings.

4.1 Relation to Kelly-Strategyproofness
Though some rules—the omninomination rule and the top cycle for

example—have been shown to be strategyproof under Gärdenfors

preferences [10, 20], Gärdenfors-strategyproofness—meaning no

agent with Gärdenfors preferences can manipulate—is quite hard to

attain. While strategyproofness proper for Gärdenfors preferences

is not easily satisfied, there are several appealing tournament solu-

tion SCFs that have been shown to be strategyproof for the Kelly

preference extension.

The Kelly preference extension [23]—which we will refer to as

k— extends a (strict) preference relation ≻ as follows. For any two

sets X and Y in 2
A \ {∅}, X ≻k Y if and only if x ≻ y for all x ∈ X

and all y ∈ Y . We say a SCF f is Kelly-strategyproof if no agent

5
The result also extends to Slater’s weighted counterpart, the Kemeny rule [24].



with Kelly preferences can manipulate successfully, i.e., if there are

no agent i ∈ N and profiles P =−i P ′
such that f (P ′) ≻P ,k

i f (P).
Gärdenfors-strategyproofness implies Kelly-strategyproofness, as

the former must exclude more cases of manipulation to be satisfied.

As robustness only requires taking into account comparisons where

at least one singleton set is present, we can use strategyproofness

results for Kelly preferences to show robustness for Gärdenfors

preferences.

Proposition 4.1. If a Condorcet-consistent SCF f is Kelly-
strategyproof, then it is a robust Condorcet extension under Gärdenfors
preferences.

Proof. Suppose we have a rule f that is Kelly-strategyproof.

That is, for any two profiles P and P ′
, and any agent i ∈ N , if

P ′ =−i P , then f (P ′) ⊁P ,k
i f (P). Suppose P has a Condorcet

winner, meaning f (P) = {a} for some a ∈ A. If this is the case,

either f (P ′) = f (P), or there is some a′ ∈ f (P ′) such that a ≻P
i a′.

If f (P ′) = f (P) then agent i cannot strictly prefer one outcome over

the other under any preference extension, so f (P ′) ⊁P ,д
i f (P).

If there is some a′ ∈ f (P ′) s.t. a ≻P
i a′, then, as a′ ∈ f (P ′)\ f (P),

it is immediate from the definition of the Gärdenfors extension that

f (P ′) ⊁P ,д
i f (P). □

We therefore get robustness “for free” for Condorcet extensions

known to be Kelly-strategyproof. Among these are social choice

functions that are not fully strategyproof for Gärdenfors prefer-

ences, such as the bipartisan set and the minimal covering set [10].

4.2 Minimal Extending Set & Beyond
Before we present our positive robustness results, we need to define

the Banks set and the minimal extending set.

A tournamentT ′ = (S ′,≻T
′
) is a maximal transitive subtourna-

ment ofT = (S,≻T ) if

(i) T ′
is a subtournament ofT ,

(ii) ≻T
′
is a transitive relation, and

(iii) there is no other transitive subtournament (S ′′,≻T
′′
) of T

such that S ′ ⊂ S ′′.

We write
ˆT to denote the set of all maximal transitive subtourna-

ments of tournamentT , and top(≻) to denote the maximal element

of the strict linear order ≻. Note that if a tournament T has a

Condorcet winner, it will be the maximal element of all maximal

transitive subtournaments.
6

The Banks set [2] is the set of maximal elements of all maximal

transitive subtournaments of a tournament:

BA(T ) = {top(≻TS ) | (S,≻
T
S ) ∈

ˆT }.

Because the Condorcet winner will top all maximal transitive sub-

tournaments, Banks is a Condorcet extension.

A set S ⊆ A is a BA-stable set of a tournament T if a < BA(S ∪

{a},≻TS∪{a }) for all a ∈ A \ S . A BA-stable set of a tournamentT is

minimal if there is no BA-stable set S ′ of T such that S ′ ⊂ S . The

6
As the existence of a Condorcet winner does not imply no cycles are present, there

may indeed be several maximal transitive subtournaments.

minimal extending set ME(T ) [9] of a tournamentT is the union of

all minimal BA-stable sets ofT :

ME(T ) =
⋃

{S ⊆ A | S is a minimal BA-stable set ofT }.

We give an example to shed some light on these definitions.

Example 4.1. In the tournamentT below, the two maximal tran-

sitive subtournaments are indicated using black edges. It is clear

that the subtournaments are transitive, and they are both maximal;

adding the last alternative will break transitivity. From examining

these subtournaments, we can see that BA(T ) = {a,b}.
a

d

b

c

a

d

b

c

The tournament has two minimal BA-stable sets: {a,b,d}—because
c < BA(T ), and {a,b, c}—because d < BA(T ). ME will output the

union of these sets: ME(T ) = {a,b, c,d}. Note that the set {b, c,d}
is not BA-stable, as a ∈ BA(T ). △

ME is one of several tournament solutions defined based on this

notion of stability. The top cycle for example, is the union of all

minimal CNL-stable sets [9], where CNL is the tournament solution

returning the set of all Condorcet nonlosers—meaning all alterna-

tives with at least one outgoing edge. We will use BA and ME to

refer both to the tournaments solutions above, and the equivalent

social choice functions.

The minimal extending set is not Kelly-strategyproof as

Kelly-strategyproofness of tournament solutions implies set-

monotonocity, a strong monotonicity axiom [8]. As ME is not a

monotonic rule, it also fails the stronger set-monotonicity axiom.

However, we show it is still robust under Gärdenfors preferences,

and extend this result to all coarsenings of ME.

Theorem 4.2. ME is a robust Condorcet extension under Gärden-
fors preferences.

Proof. For a set of alternatives A, and a set of agents N , let

P =−i P ′
be i-variant profiles for an agent i ∈ N . Let P be such

that x ∈ A is the Condorcet winner in P . Let T = (A,≻T ) and

T ′ = (A,≻T
′
) be the (single-agent variant) tournaments induced

by P and P ′
, respectively.

We assume ME(T ′) , ME(T ).7 Because of this, we know DT ′(x)
is nonempty, as the two outcomes cannot differ if x remains a

Condorcet winner in T ′
. As P =−i P ′

, any changes going from T
toT ′

must be counter to agent i’s preferences. This implies x ≻P
i a

for all a ∈ DT ′(x). So, all alternatives in DT ′(x) are worse than x
according to agent i .

We want to show that there is some minimal BA-stable set S of

T ′
, such that S ∩DT ′(x) , ∅. This would guarantee the existence of

an alternative a ∈ DT ′(x) that is also in ME(T ′), precluding agent i
from preferring this outcome to ME(T ).

7
If no such i-variants exist, robustness of the rule would immediately follow.



So suppose for contradiction that S is a minimal BA-stable set

ofT ′
such that S ∩ DT ′(x) = ∅. The only way this can be the case

is if S ⊆ DT ′(x) ∪ {x}. We consider two cases.

Case 1: Suppose x < S . As x dominates all alternatives in DT ′(x),
it will dominate all alternatives in S , as S ⊆ DT ′(x). This means x is

a Condorcet winner in the tournament (S ∪ {x},≻T
′

S∪{x }), and thus,

x ∈ BA(≻T
′

S∪{x }). So S cannot be a BA-stable set, contradicting our

assumption that it is a minimal one.

Case 2: Suppose instead x ∈ S . To reach our contradiction, we

want to show there exists an alternative a ∈ DT ′(x) such that

a ∈ BA(≻T
′

S∪{a })—which would imply S is not BA-stable.

We use an algorithm proposed by Hudry [22] to find such an

alternative a ∈ BA(≻T
′

S∪{a }). We start at step 1 with a transitive

subtournament of (S ∪ {a},≻T
′

S∪{a }). Let S1 = ({x ,a},≻T
′

{x,a }), for

some a ∈ DT ′(x). We label all remaining elements of S—which
are all elements of DT ′(x)—in any order from 2 to |S |. At step k ,
we look at the alternative labelled k , and add it to the tournament

Sk−1 to create Sk , if it does not break transitivity to do so. As a
dominates x , and x dominates all a′ ∈ DT ′(x), adding any alter-

native outside the dominion of a will break transitivity, as it will

create a 3-cycle. Thus, at any step, an alternative a′ ∈ DT ′(x) will

only be added to the tournament if a ≻T
′
a′. When the algorithm

terminates after iterating through all alternatives, we will be left

with a subtournament S |S | of (S ∪ {a},≻T
′

S∪{a }). It is easy to see

the resulting tournament will be transitive, and it will indeed be

a maximal transitive subtournament of (S ∪ {a},≻T
′

S∪{a }), as no

further alternatives can be added to the tournament without break-

ing transitivity. Importantly, the maximal element of the resulting

subtournament will be a, meaning a ∈ BA(≻T
′

S∪{a }). Thus, S cannot

be an BA-stable set, which contradicts our assumption that it is a

minimal one.

As we have shown that no subset of DT ′(x) ∪ {x} can be a

BA-stable set of T ′
, any minimal BA-stable set must contain at

least one element of DT ′(x), meaning it cannot be the case that

ME(T ′) ≻P ,д
i ME(T ). □

In terms of decisiveness, ME is among themore decisive tournament

solutions that fail weak resoluteness, as it is a refinement of several

prominent tournament solutions, including the top cycle, the Banks

set [13] and the uncovered set (see Brandt et al. [11] for definitions

and further rules that fall into this category).

We now show that these coarsenings of ME inherit the robust-

ness property.

Lemma 4.3. If a Condorcet-consistent SCF f is robust under Gär-
denfors preferences, then all Condorcet-consistent coarsenings of f
are robust under Gärdenfors preferences.

Proof. Let f be a SCF that is robust under Gärdenfors prefer-

ences, and let f ′ be a Condorcet-consistent coarsening of f . Let P be

a profile with a Condorcet winner a. Note that f (P) = f ′(P) = {a}
as they are both Condorcet extensions.

Suppose P ′
is an i-variant of P for some agent i ∈ N . Because

f is robust under Gärdenfors preferences, either (i) there must be

some a′ ∈ f (P ′) such that a ≻P
i a′, or (ii) f (P) = f (P ′).

If (i) is the case, then as f (P ′) ⊆ f ′(P ′), a′ is also an element

of f ′(P ′). As f ′(P) = {a}, we know a′ ∈ f ′(P ′) \ f ′(P), meaning

by defintion of the Gärdenfors extension that it cannot be the case

that f ′(P ′) ≻P ,д
i f ′(P).

If (ii) is the case, we know a must also be the Condorcet winner

in P ′
as f cannot satisfy weak resoluteness if it is robust under any

preference extension, and therefore does not return singletons out-

side the Condorcet domain. Since f ′ is also a Condorcet extension,

we know f ′(P ′) = {a}, meaning f ′(P ′) ⊁P ,д
i f ′(P). □

Corollary 4.4. Condorcet-consistent coarsenings of ME are robust
under Gärdenfors preferences.

Corollary 4.4 follows from Lemma 4.3 and Theorem 4.2, and it

establishes the robustness of the Banks set and the uncovered set,

neither of which is Kelly-strategyproof. Note that Corollary 4.4

is not restricted to tournament-solution SCFs, but holds for all

Condorcet-consistent social choice functions.

5 CONCLUSION
Wehave introduced the strategyproofness-related notion of a robust

Condorcet extension. We have argued that Condorcet extensions

that are robust are preferable to those that are not, as we can trust

that they will return true Condorcet winners when they exists. We

have introduced an axiom—weak resoluteness—and shown that no

weakly resolute tournament solution can be a robust Condorcet

extension. Finally, we have shown that the minimal extending set

is a robust Condorcet extension under Gärdenfors preferences, and

have extended this result to all coarsenings of ME.

We have argued that in lieu of searching for fully strategyproof

rules, a fruitful endeavor is to explore immunity against more spe-

cific manipulations that may interact with, and compromise, other

desirable properties satisfied bymanipulable social choice functions.

We have scratched the surface in this paper, but have contained our

exploration to robustness of irresolute rules in general, and tourna-

ment solutions in particular. These are, of course, only a small class

of all Condorcet extensions, and it remains to be seen if similar

results can be obtained for other classes. Finally, there are many

other arenas of social choice theory open to similar notions of strat-

egyproofness. While proportionality and strategyproofness cannot

be satisfied by the same multiwinner approval voting rule for ex-

ample [29], one might want to ask to what degree proportionality

is affected by the failure of strategyproofness.
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